
Encryption Facility for z/OS:

User’s Guide

Version 1 Release 1.0

SA23-1349-02

���

Encryption Facility for z/OS:

User’s Guide

Version 1 Release 1.0

SA23-1349-02

���

Note

Before using this information and the product it supports, read the information under “Notices,” on page 69.

Third Edition (April 2006)

This edition applies to version 1, release 1, modification 0 of IBM Encryption Facility for z/OS (product number

5655-P97) and to all subsequent releases and modifications until otherwise indicated in new editions. This is a major

revision of SA23-1349-01.

IBM welcomes your comments. A form for readers’ comments may be provided at the back of this document, or you

may address your comments to the following address:

 International Business Machines Corporation

 Department 55JA, Mail Station P384

 2455 South Road

 Poughkeepsie, NY 12601-5400

 United States of America

 FAX (United States & Canada): 1+845+432-9405

 FAX (Other Countries):

 Your International Access Code +1+845+432-9405

 IBMLink™ (United States customers only): IBMUSM10(MHVRCFS)

 Internet e-mail: mhvrcfs@us.ibm.com

 World Wide Web: www.ibm.com/servers/eserver/zseries/zos/webqs.html

If you would like a reply, be sure to include your name, address, telephone number, or FAX number.

Make sure to include the following in your comment or note:

v Title and order number of this document

v Page number or topic related to your comment

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information in any

way it believes appropriate without incurring any obligation to you.

© Copyright International Business Machines Corporation 2005, 2006. All rights reserved.

US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract

with IBM Corp.

http://www.ibm.com/servers/eserver/zseries/zos/webqs.html

Contents

Figures . v

About This Book . vii

Who should read this book . vii

How to use this book . vii

Where to find more information viii

Related publications . viii

Using LookAt to look up message explanations ix

Using IBM Health Checker for z/OS ix

Other sources of information . x

IBM discussion area . x

Internet sources . x

Do you have problems, comments, or suggestions? xi

Summary of changes . xiii

Chapter 1. Overview of IBM Encryption Facility for z/OS 1

What is Encryption Facility? . 1

Features available with Encryption Facility 1

Encryption Services . 1

Encryption Facility for z/OS Client 2

DFSMSdss Encryption . 2

Comparison of Encryption Facility features and functions 2

Security Server RACF enhancements 3

Summary of Encryption Facility functions 3

How Encryption Services and Encryption Facility for z/OS Client work 3

How Encryption Services works 3

How Encryption Facility for z/OS Client works 4

How DFSMSdss Encryption works 5

Hardware and software requirements 6

Hardware requirements . 6

Software requirements . 8

Chapter 2. Getting started . 11

How do I install IBM Encryption Facility for z/OS? 11

Getting started with Encryption Services 11

Getting started with ICSF . 11

Getting started with Encryption Facility for z/OS Client 14

Getting started with DFSMSdss Encryption 14

Getting started with RACF . 14

Chapter 3. Encrypting files through CSDFILEN of Encryption Services 15

JCL DD statements for CSDFILEN 15

Control statement keywords for CSDFILEN SYSIN DD 17

User guidelines and samples for encrypting data 19

When should I use CLRTDES or ENCTDES? 19

Using PASSWORD and RSA options 20

Specifying multiple RSA keys 21

Using RSA keys and digital certificates 21

Specifying the ICOUNT value 21

When should I compress data for encryption? 21

Verifying encryption files when you archive 22

Using Encryption Facility and UNIX pipes 22

© Copyright IBM Corp. 2005, 2006 iii

||

Format of the header record for the CSDFILEN output file 22

Format of the statistics report file for CSDFILEN 24

Return codes for CSDFILEN 27

JCL Examples for CSDFILEN 28

ICSF callable services for CSDFILEN 30

Chapter 4. Decrypting files through CSDFILDE of the Encryption Services 31

JCL DD statements for CSDFILDE 31

Control statement keywords for CSDFILDE SYSIN DD 33

User reference information for decrypting data 34

Format of the statistics report file for CSDFILDE 34

Return codes for CSDFILDE 36

JCL examples for CSDFILDE 37

ICSF callable services for CSDFILDE 38

Chapter 5. Using Encryption Facility for z/OS Client 39

Encryption and decryption functions 39

Installing the Java code . 39

Using RSA keys and certificates 39

Considerations using Encryption Facility for z/OS Client 40

Chapter 6. Using DFSMSdss Encryption 43

JCL examples for DFSMSdss Encryption 45

Chapter 7. Using RACF with Encryption Facility 47

Using RACF to store keys, manage PKDS labels, and send digital certificates 47

Using the RACDCERT command 48

Considerations using RACDCERT 54

RACF messages and codes for Encryption Facility 55

Chapter 8. User scenarios . 57

Encrypting data using z/OS and decrypting using Encryption Facility for z/OS

Client . 57

Scenario 1 . 57

Scenario 2 . 58

Scenario 3 . 60

Using the RACDCERT command for key and certificate management of

encrypted data . 64

Using ICSF utilities panels for PKDS key management 65

Appendix. Notices . 69

Programming interface information 70

Trademarks . 71

Index . 73

iv Encryption Facility for z/OS:: User’s Guide

||

||

Figures

1. Encrypting and decrypting data with Encryption Services and Encryption Facility for z/OS Client 5

2. Encrypting and decrypting data with DFSMSdss Encryption 6

3. Establishing a trusted exchange through digital certificates 48

© Copyright IBM Corp. 2005, 2006 v

vi Encryption Facility for z/OS:: User’s Guide

About This Book

This information supports z/OS® (5694–A01). The document contains information

about using IBM Encryption Facility for z/OS (Encryption Facility).

Encryption Facility provides encryption and decryption processing of data for

exchange between different systems and platforms and for archiving purposes. It

makes use of hardware compression and encryption and relies on a centralized key

management based on the z/OS Integrated Cryptographic Service Facility (ICSF).

Encryption Facility consists of the following optional features:

v Encryption Facility Encryption Services for z/OS

v Encryption Facility DFSMSdss Encryption

A licensed Java™ reference program called Encryption Facility for z/OS Client is

also downloadable from the Worldwide Web.

This document provides you with the information to set up the encryption and

decryption through job control entry (JCL) statements on z/OS for the Encryption

Services and how to use the Security Server RACF® commands with the product. It

also provides an overview of Encryption Facility for z/OS Client and DFSMSdss

Encryption.

Who should read this book

Anyone who plans, installs, customizes, administers, and uses Encryption Facility

should use this document. It should also be used by those who install, configure, or

provide support in the following areas:

v z/OS

v Integrated Cryptographic Service Facility (ICSF)

v Security Server Resource Access Control Facility (RACF)

v DFSMSdss

This product assumes that you have experience installing, configuring, and using

z/OS, ICSF, RACF, and DFSMSdss. If you plan to use the Java reference code, the

product assumes that you understand Java–related concepts and tasks. You should

be knowledgeable about the following areas:

v Public key infrastructure (PKI) technology

v Use of Job Entry Control (JCL) language

v Use of RACF commands and interfaces

v Use of DFSMSdss commands and interfaces

How to use this book

This document contains the following chapters:

v Chapter 1, “Overview of IBM Encryption Facility for z/OS,” on page 1 presents an

overview of Encryption Facility, the functions of the product, and hardware and

software requirements.

v Chapter 2, “Getting started,” on page 11 presents information about installation

and getting started with Encryption Facility.

v Chapter 3, “Encrypting files through CSDFILEN of Encryption Services,” on page

15 presents information about using the CSDFILEN batch program for the

Encryption Services.

© Copyright IBM Corp. 2005, 2006 vii

v Chapter 4, “Decrypting files through CSDFILDE of the Encryption Services,” on

page 31 presents information about using the CSDFILDE batch program for the

Encryption Services.

v Chapter 5, “Using Encryption Facility for z/OS Client,” on page 39 presents

overview information about using Encryption Facility for z/OS Client and how to

obtain more information.

v Chapter 6, “Using DFSMSdss Encryption,” on page 43 presents overview

information about using DFSMSdss Encryption and how to obtain more

information.

v Chapter 7, “Using RACF with Encryption Facility,” on page 47 presents

information about using RACF with Encryption Facility.

v Chapter 8, “User scenarios,” on page 57 presents user scenarios for Encryption

Facility.

Where to find more information

Where necessary this document references information in other documents. For

complete titles and order numbers for all elements of z/OS, see z/OS Information

Roadmap.

Related information:

v Integrated Cryptographic Service Facility (ICSF) publications

v Security Server RACF publications

Related publications

The Encryption Facility library contains the following books:

v IBM Encryption Facility for z/OS: Licensed Program Specifications

v IBM Encryption Facility for z/OS: Program Directory

v IBM Encryption Facility for z/OS: User’s Guide

The following ICSF books are referenced in this book:

v z/OS Cryptographic Services ICSF Administrator’s Guide

v z/OS Cryptographic Services ICSF Application Programmer’s Guide

v z/OS Cryptographic Services ICSF Overview

v z/OS Cryptographic Services ICSF System Programmer’s Guide

The following RACF book is referenced in this book:

v z/OS Security Server RACF Command Language Reference

The following DFSMS books are referenced in this book:

v z/OS DFSMSdfp Advanced Services

v z/OS DFSMS Storage Administration Reference.

v z/OS DFSMShsm Storage Administration Guide

v z/OS DFSMShsm Implementation and Customization Guide

Documentation for the PCI Cryptographic Coprocessor is found on the web at

http://www.ibm.com/security/cryptocards/library.shtml.

v IBM® 4758 PCI Cryptographic Coprocessor CCA Support Program Installation

Manual for IBM 4758 Models 002 and 023

viii Encryption Facility for z/OS:: User’s Guide

http://www.ibm.com/security/cryptocards/library.shtml

v IBM 4758 PCI Cryptographic Coprocessor CCA Basic Services Reference and

Guide for the IBM 4758 Models 002 and 023

v IBM 4758 PCI Cryptographic Coprocessor General Information

v IBM 4758 PCI Cryptographic Coprocessor Installation

Using LookAt to look up message explanations

LookAt is an online facility that lets you look up explanations for most of the IBM

messages you encounter, as well as for some system abends and codes. Using

LookAt to find information is faster than a conventional search because in most

cases LookAt goes directly to the message explanation.

You can use LookAt from these locations to find IBM message explanations for

z/OS elements and features, z/VM®, VSE/ESA™, and Clusters for AIX® and Linux™:

v The Internet. You can access IBM message explanations directly from the LookAt

Web site at www.ibm.com/servers/eserver/zseries/zos/bkserv/lookat/.

v Your z/OS TSO/E host system. You can install code on your z/OS or z/OS.e

systems to access IBM message explanations using LookAt from a TSO/E

command line (for example: TSO/E prompt, ISPF, or z/OS UNIX® System

Services).

v Your Microsoft® Windows® workstation. You can install LookAt directly from the

z/OS Collection (SK3T-4269) or the z/OS and Software Products DVD Collection

(SK3T-4271) and use it from the resulting Windows graphical user interface

(GUI). The command prompt (also known as the DOS > command line) version

can still be used from the directory in which you install the Windows version of

LookAt.

v Your wireless handheld device. You can use the LookAt Mobile Edition from

www.ibm.com/servers/eserver/zseries/zos/bkserv/lookat/lookatm.html with a

handheld device that has wireless access and an Internet browser (for example:

Internet Explorer for Pocket PCs, Blazer or Eudora for Palm OS, or Opera for

Linux handheld devices).

You can obtain code to install LookAt on your host system or Microsoft Windows

workstation from:

v A CD-ROM in the z/OS Collection (SK3T-4269).

v The z/OS and Software Products DVD Collection (SK3T-4271).

v The LookAt Web site (click Download and then select the platform, release,

collection, and location that suit your needs). More information is available in the

LOOKAT.ME files available during the download process.

Using IBM Health Checker for z/OS

IBM Health Checker for z/OS is a z/OS component that installations can use to

gather information about their system environment and system parameters to help

identify potential configuration problems before they impact availability or cause

outages. Individual products, z/OS components, or ISV software can provide checks

that take advantage of the IBM Health Checker for z/OS framework. This book

refers to checks or messages associated with this component.

For additional information about checks and about IBM Health Checker for z/OS,

see IBM Health Checker for z/OS: User’s Guide. Starting with z/OS V1R4, z/OS

users can obtain the IBM Health Checker for z/OS from the z/OS Downloads page

at www.ibm.com/servers/eserver/zseries/zos/downloads/.

About This Book ix

http://www.ibm.com/servers/eserver/zseries/zos/bkserv/lookat/
http://www.ibm.com/servers/eserver/zseries/zos/bkserv/lookat/lookatm.html
http://www.ibm.com/servers/eserver/zseries/zos/downloads/

SDSF also provides functions to simplify the management of checks. See z/OS

SDSF Operation and Customization for additional information.

Other sources of information

IBM provides customer-accessible discussion areas where PKI Services and RACF

may be discussed by customer and IBM participants. Other information is also

available through the Internet.

IBM discussion area

IBM provides the ibm.servers.mvs.racf newsgroup for discussion of PKI Services

and RACF-related topics. You can find this newsgroup on news (NNTP) server

news.software.ibm.com using your favorite news reader client.

Internet sources

The following resources are available through the Internet to provide additional

information about PKI Services, RACF, and many other security-related topics:

v Online library

To view and print online versions of the z/OS publications, use this

address:www.ibm.com/servers/eserver/zseries/zos/bkserv/

v Redbooks™

The Redbooks™ that are produced by the International Technical Support

Organization (ITSO) are available at the following address:www.ibm.com/
redbooks

v Enterprise systems security

For more information about security on the zSeries® platform and z/OS, use this

address: www.ibm.com/servers/eserver/zseries/zos/security/

v PKI Services home page

You can visit the PKI Services home page on the World Wide Web using the

following address. Check this site for updates regarding PKI Services.

http://www.ibm.com/servers/eserver/zseries/zos/pki/.

v Techdocs

You can visit the Techdocs - Technical Sales Library home page on the World

Wide Web using the following address. Use the search keyword “crypto” to help

narrow your search: www.ibm.com/support/techdocs/.

v RACF home page

You can visit the RACF home page on the World Wide Web using the following

address. www.ibm.com/servers/eserver/zseries/zos/racf/goodies.html .

v RACF-L discussion list

Customers and IBM participants may also discuss RACF on the RACF-L

discussion list. RACF-L is not operated or sponsored by IBM; it is run by the

University of Georgia.

To subscribe to the RACF-L discussion and receive postings, send a note to:

listserv@listserv.uga.edu

Include the following line in the body of the note, substituting your first name and

last name as indicated:

subscribe racf-l first_name last_name

To post a question or response to RACF-L, send a note, including an appropriate

Subject: line, to:

x Encryption Facility for z/OS:: User’s Guide

http://www.ibm.com/servers/eserver/zseries/zos/bkserv/
http://www.ibm.com/redbooks
http://www.ibm.com/redbooks
http://www.ibm.com/servers/eserver/zseries/zos/security/
http://www.ibm.com/servers/eserver/zseries/zos/pki/
http://www.ibm.com/support/techdocs/
http://www.ibm.com/servers/eserver/zseries/zos/racf/goodies.html

racf-l@listserv.uga.edu

v RACF sample code

You can get sample code, internally-developed tools, and exits to help you use

RACF. This code works in our environment, at the time we make it available, but is

not officially supported. Each tool or sample has a README file that describes the

tool or sample and any restrictions on its use.

To access this code from a Web browser, go to the RACF home page and select

the “Downloads” topic from the navigation bar, or go to ftp://ftp.software.ibm.com/
eserver/zseries/zos/racf/.

The code is also available from ftp.software.ibm.com through anonymous FTP. To

get access:

1. Log in as user anonymous.

2. Change the directory, as follows, to find the subdirectories that contain the

sample code or tool you want to download:

cd eserver/zseries/zos/racf/

An announcement will be posted on RACF-L discussion list and on newsgroup

ibm.servers.mvs.racf whenever something is added.

Note: Some Web browsers and some FTP clients (especially those using a

graphical interface) might have problems using ftp.software.ibm.com

because of inconsistencies in the way they implement the FTP protocols. If

you have problems, you can try the following:

v Try to get access by using a Web browser and the links from the RACF

home page.

v Use a different FTP client. If necessary, use a client that is based on

command line interfaces instead of graphical interfaces.

v If your FTP client has configuration parameters for the type of remote

system, configure it as UNIX instead of MVS™.

Restrictions

Because the sample code and tools are not officially supported,

 – There are no guaranteed enhancements.

 – No APARs can be accepted.

Do you have problems, comments, or suggestions?

Your suggestions and ideas can contribute to the quality and the usability of this

book. If you have problems while using this book, or if you have suggestions for

improving it, complete and mail the Reader’s Comment Form found at the back of

the book.

About This Book xi

xii Encryption Facility for z/OS:: User’s Guide

Summary of changes

Summary of changes

for SA23-1349-02

Encryption Facility for z/OS Version 1 Release 1

New Information: This release of IBM Encryption Facility for z/OS: User’s Guide

contains information about specifying multiple RSA control statements for

Encryption Facility Services and multiple RSA certificate aliases for Encryption

Facility for z/OS Client. Encryption Facility for z/OS Client also supports fixed

records for encryption. In addition this document provides overview information

about using ICSF utility panels to manage RSA public/private key pairs in the ICSF

public key data set (PKDS).

Multiple RSA support requires the installation of the Encryption Facility PTF for

APAR OA15158. The support for ICSF utiltity functions requires the installation of

the ICSF PTF for APAR OA15156.

This document contains terminology, maintenance, and editorial changes. Technical

changes or additions to the text and illustrations are indicated by a vertical line to

the left of the change.

 Summary of changes

for SA23-1349-01

Encryption Facility for z/OS Version 1 Release 1

New Information: This release of Encryption Facility contains information for

DFSMShsm™ and the DFSMSdss Encryption feature. For complete information

about using DFSMShsm with the DFSMSdss Encryption feature, see the following

publications:

v z/OS DFSMShsm Storage Administration Guide

v z/OS DFSMShsm Implementation and Customization Guide

© Copyright IBM Corp. 2005, 2006 xiii

|
|
|

|
|
|
|
|
|
|

|
|
|

|
|
|

xiv Encryption Facility for z/OS:: User’s Guide

Chapter 1. Overview of IBM Encryption Facility for z/OS

This chapter presents an overview of IBM Encryption Facility for z/OS (Encryption

Facility), the functions of the product, and hardware and software requirements.

What is Encryption Facility?

The need for creating secure archived copies of business data is a critical security

concern. Encrypting data that can be recovered at any time offers a high degree of

privacy protection from unwanted access. Encryption Facility provides this

protection by offering encryption of data for exchange between different systems

and platforms and for archiving purposes. It makes use of hardware compression

and encryption and relies on a centralized key management based on the z/OS

Integrated Cryptographic Service Facility (ICSF) that is highly secure and easy to

use.

Encryption Facility makes use of ICSF to perform encryption and decryption and to

manage cryptographic keys. To encrypt data files Encryption Facility uses the

following kinds of cryptographic keys:

v TDES triple-length keys

v 128–bit AES keys

For information about cryptographic keys, see the following publications:

v z/OS Cryptographic Services ICSF Administrator’s Guide

v z/OS Cryptographic Services ICSF Application Programmer’s Guide

For information about hardware requirements for Encryption Facility, see “Hardware

and software requirements” on page 6.

Features available with Encryption Facility

Version 1 Release 1.0 of IBM Encryption Facility for z/OS provides the following

optional features:

 Table 1. Features for Encryption Facility

Feature Description

IBM Encryption Facility for z/OS Encryption Services,

called in this document Encryption Services

Complementary encryption and decryption batch programs

that run on z/OS and allow you to encrypt and decrypt

data

IBM Encryption Facility for z/OS DFSMSdss Encryption,

called in this document DFSMSdss Encryption

Services that run on z/OS DFSMSdss™ and allow you to

use DFSMSdss commands to encrypt and decrypt data.

With this feature, you can also use DFSMShsm

commands to encrypt and decrypt data.

IBM Encryption Facility for z/OS Encryption Facility for z/OS Client, called in this

document Encryption Facility for z/OS Client, is a Java reference program that

allows you to encrypt and decrypt z/OS format data on non-z/OS platforms.

Encryption Facility for z/OS Client is available as licensed downloadable code from

the Web. See “Software requirements” on page 8.

Encryption Services

Through Encryption Services, you can encrypt data on DASD or tape into a file that

contains a header with enough information to recover or decrypt the data.

© Copyright IBM Corp. 2005, 2006 1

Moreover, the encrypted file and its associated encryption key can withstand

multiple changes to the master key in the ICSF hardware on the original or target

systems. As a result, you can recover archived files that you create through

Encryption Facility at any time, even years after the files are created.

You code job control statements (JCL) to control the following Encryption Services

functions:

v CSDFILEN to encrypt the data

v CSDFILDE to decrypt the data

You can optionally specify that the data is to be compressed before encryption and

that the encrypted data, which is an output sequential file, is to be sent to tape for

archiving or transfer.

Encryption Facility for z/OS Client

Encryption Facility for z/OS Client is Java reference code that allows you to control

encryption and decryption of data on platforms other than z/OS or on z/OS systems

that do not use Encryption Services. In that way, you can exchange encrypted data

between z/OS and non-z/OS platforms as long as the encrypted data is created

through Encryption Services or Encryption Facility for z/OS Client.

DFSMSdss Encryption

DFSMSdss Encryption is an optional feature that allows you to use z/OS

DFSMSdss to encrypt data from the DFSMSdss DUMP command for tape or

DASD. You can decrypt the data through the RESTORE command. With this

feature you can also use the DFSMShsm dump class settings to encrypt data

dumped through the BACKVOL DUMP command and automatic dump processing

and decrypt the data through the RECOVER command.

Comparison of Encryption Facility features and functions

Table 2 summarizes the functions for Encryption Services, DFSMSdss Encryption,

and Encryption Facility for z/OS Client:

 Table 2.

Encryption Services DFSMSdss Encryption Encryption Facility for z/OS Client

v Allows encryption and compression

of data files

v Supports decryption and

decompression of data files

v Makes use of z/OS centralized key

management and access

authentication

v Uses IBM mainframe server

cryptographic and compression

capabilities

v Can use either public/private key

pairs or passwords to create secure

exchange between partners.

v Allows encryption and compression

of dump data sets created by

DFSMSdss or DFSMShsm

v Supports decryption and

decompression during RESTORE

process for DFSMSdss and

RECOVER for DFSMShsm

v Makes use of z/OS centralized key

management and IBM mainframe

cryptographic functions and

compression

v Can use either public/private key

pairs or passwords to create secure

exchange between partners.

v Optional feature that you can order

from the World Wide Web

v Java-based code that allows client

systems to decrypt and encrypt

tapes for exchange with z/OS

systems

v Requires a license from the Web

site to be used in conjunction with

the Encryption Services feature on

z/OS systems

v Can be used on any Java-enabled

system

v Can use either public/private key

pairs or passwords to create secure

exchange between partners.

2 Encryption Facility for z/OS:: User’s Guide

|
|
|

Security Server RACF enhancements

Enhancements to Security Server RACF (RACF), an element of z/OS, allow you to

store internal RSA public and private keys for encrypted data in the ICSF public key

data set (PKDS) and specify the PKDS labels for security certificates associated

with encrypted data. Although you can use your own programs to load the PKDS,

RACF provides a command (RACDCERT) to load the keys.

Summary of Encryption Facility functions

Table 3 summarizes the functions and support that Encryption Facility for z/OS

provides:

 Table 3.

Support or function Available with IBM Encryption Facility

z/OS and z/OS.e V1.4 and later releases (see “Software requirements” on

page 8.)

z/OS Cryptographic Services Integrated Cryptographic Services Facility with z990

Cryptographic Support Web deliverable (FMID HCR770A)

and later releases

Tape or DASD support Both

Archiving of data Yes

Exchange of data Yes

Data portable to other platforms Yes through Encryption Facility for z/OS Client

zSeries® hardware compression Yes

zSeries encryption Yes

Decryption on platforms other than z/OS Yes through Encryption Facility for z/OS Client

zSeries hardware cryptographic acceleration Yes

Key management through ICSF Yes (Encryption Services and DFSMSdss Encryption only)

JCL required Yes (Encryption Services only)

Public key exchange through certificates Through RACF or ICSF

LDAP integration No

User interface JCL control statements, RACF commands, DFSMSdss

and DFSMShsm commands for DFSMSdss Encryption,

and Encryption Facility for z/OS Client Java code

How Encryption Services and Encryption Facility for z/OS Client work

Encryption Services and Encryption Facility for z/OS Client allow you to encrypt

z/OS format data. You can archive the data to tape or DASD and send the data to

another platform where you can use either Encryption Services or Encryption

Facility for z/OS Client to decrypt the data.

How Encryption Services works

Encryption Services is an optional feature of Encryption Facility that runs on z/OS. It

includes the CSDFILEN batch program to encrypt data and the CSDFILDE batch

program to decrypt data.

Encryption Services can make use of a symmetric key that is randomly generated

to protect the data. It encrypts this data key and stores it with the data in a header

record. Encryption Services allows you to protect the data key by using public key

Chapter 1. Overview of IBM Encryption Facility for z/OS 3

|

architecture, by providing an RSA key label, or, if an RSA public/private key pair is

not available, by using a key that is generated from a password that you provide.

CSDFILEN batch program: The input data to be encrypted by CSDFILEN is a

sequential file on DASD or tape, PDS or PDSE member, or a z/OS UNIX Systems

Services file. You can optionally specify that the input data is to be compressed

before it is encrypted.

The output is a sequential file with undefined record format. The output contains

information required to decipher the encrypted data. You can specify that the output

is to be written to a data set, tape, or DASD. With tape, the block size can be as

large as is supported by QSAM (currently, 256 KB) to optimize performance and

media space.

You specify the JCL for CSDFILEN as follows:

v Options to control the encryption process on the SYSIN statement

v SYSPRINT DD that contains a statistics report on the data that CSDFILEN

encrypts

v SYSUT DD statements for the input data file (SYSUT1) and the output for the

encrypted data (SYSUT2)

For information about CSDFILEN, see Chapter 3, “Encrypting files through

CSDFILEN of Encryption Services,” on page 15.

CSDFILDE batch program: The input to CSDFILDE is the encrypted data from the

CSDFILEN batch program or Encryption Facility for z/OS Client. You can specify

that only information about the encrypted data is to be written to SYSPRINT

through the JCL statements.

You specify the JCL for CSDFILDE as follows:

v Options to control the decryption process on the SYSIN statement

v SYSPRINT DD that contains a statistics report on the data that CSDFILDE

decrypts

v SYSUT DD statements for the input encrypted data (SYSUT1) and the output for

the decrypted data (SYSUT2)

For information about CSDFILDE, see Chapter 4, “Decrypting files through

CSDFILDE of the Encryption Services,” on page 31.

ICSF callable services: ICSF callable services are invoked for both CSDFILEN or

CSDFILDE. For information on which callable services are available to Encryption

Facility, see “ICSF callable services for CSDFILEN” on page 30 and “ICSF callable

services for CSDFILDE” on page 38.

Statistics report file: The statistics report file contains information about the JCL

control statements for the CSDFILEN or CSDFILDE batch jobs, information about

the input file that is to be encrypted or decrypted, and performance statistics about

the job. For information, see “Format of the statistics report file for CSDFILEN” on

page 24 and “Format of the statistics report file for CSDFILDE” on page 34.

How Encryption Facility for z/OS Client works

Encryption Facility for z/OS Client is a Java package that allows you to encrypt and

decrypt z/OS format data on non-z/OS platforms. You can transport the encrypted

4 Encryption Facility for z/OS:: User’s Guide

data from Encryption Facility for z/OS Client to other platforms for archiving and

also decrypt data that has been encrypted by either Encryption Services or

Encryption Facility for z/OS Client.

Java classes for Encryption Facility for z/OS Client provide options like the JCL

options for CSDFILEN to encrypt data and CSDFILDE to decrypt data.

You download the Java package for Encryption Facility for z/OS Client from the

Web and install the Java reference code on your workstation. For information about

obtaining the code, see “Getting started with Encryption Facility for z/OS Client” on

page 14.

 Figure 1 shows how the encryption process works with Encryption Services or

Encryption Facility for z/OS Client. You can then archive the encrypted data and

decrypt the data through Encryption Services or Encryption Facility for z/OS Client:

How DFSMSdss Encryption works

The encryption/decryption process for DFSMSdss Encryption is similar to that of

Encryption Services. The DFSMSdss DUMP command and the DFSMShsm

DEFINE DUMPCLASS commands provide some of the same options as those for

the CSDFILEN batch program of Encryption Services to encrypt data. The

DFSMSdss RESTORE command and the DFSMShsm RECOVER commands

provide some of the same options as those for the CSDFILEN batch program of

Encryption Services to decrypt the data. You can encrypt data to tape or DASD.

See “Software requirements” on page 8.

Figure 2 on page 6 shows how the encryption process works with DFSMSdss

Encryption. You use DFSMSdss to encrypt data through the DUMP command

where you can archive the data. You can then decrypt the data through the

RESTORE command:

Figure 1. Encrypting and decrypting data with Encryption Services and Encryption Facility for z/OS Client

Chapter 1. Overview of IBM Encryption Facility for z/OS 5

Hardware and software requirements

The following topics describe hardware and software requirements for Encryption

Facility.

Hardware requirements

The options that you specify for encryption and decryption including cryptographic

keys depend on the processor type and the cryptographic hardware that you have

installed on the system. Table 4 summarizes the encryption options, the required

processor types, and the required cryptographic hardware for Encryption Facility:

 Table 4. Hardware requirements

Encryption options Processor type Cryptographic hardware required

Encryption type and key protection options

v CLRTDES

v PASSWORD=

3-key TDES key (24-byte

TDES key) generated using

password, iteration count, and

random salt. Iteration count

and random salt values are

stored in the header of the

encrypted file.

z800 and z900 CCF

z890 and z990 CPACF

z9 109 CPACF

Figure 2. Encrypting and decrypting data with DFSMSdss Encryption

6 Encryption Facility for z/OS:: User’s Guide

Table 4. Hardware requirements (continued)

Encryption options Processor type Cryptographic hardware required

Encryption type and key protection options

v CLRTDES

v RSA=

Random 3-key TDES key

(24-byte TDES key)

generated and encrypted with

512–2048 bit RSA public key.

Encrypted key and label of

RSA public key are stored in

the header of the encrypted

file.

z800 and z900 v CCF (for RSA modulus-exponent

form keys with modulus length

less than or equal to 1024 bits)

v PCICC (for RSA Chinese

Remainder Theorem keys with

modulus length less than or equal

to 1024 bits)

v CCF and PCICC with LIC January

2005 or later and z990 and z890

Enhancements to Cryptographic

Support Web deliverable (ICSF

HCR770B) or later for RSA keys

with up to 2048 bit modulus

z890 and z990 PCIXCC or CEX2C

System z9 109 CEX2C

v CLRAES128

v PASSWORD=

128-bit AES key generated

using password, iteration

count, and random salt.

Iteration count and random

salt values are stored in the

header of the encrypted file.

z800 and z900 CCF

z890 and z990 CPACF

z9 109 CPACF

v CLRAES128

v RSA=

Random 128-bit AES key

generated and encrypted with

512–2048-bit RSA public key.

Encrypted key and label of

RSA public key are stored in

the header of the encrypted

file.

z800 and z900 v CCF (for RSA modulus-exponent

form keys with modulus length

less than or equal to 1024 bits)

v PCICC (for RSA Chinese

Remainder Theorem keys with

modulus length less than or equal

to 1024 bits)

v CCF and PCICC with LIC January

2005 or later and z990 and z890

Enhancements to Cryptographic

Support Web deliverable (ICSF

HCR770B) or later for RSA keys

with up to 2048 bit modulus

z890 and z990 PCIXCC or CEX2C

z9 109 CEX2C

Chapter 1. Overview of IBM Encryption Facility for z/OS 7

|
|
|
|
|
|
|

Table 4. Hardware requirements (continued)

Encryption options Processor type Cryptographic hardware required

Encryption type and key protection options

v ENCTDES

v RSA=

Random 3-key TDES key

(24-byte TDES key)

generated and encrypted

under the systems DES (or

symmetric) master key. The

TDES key is also encrypted

with the 512-2048-bit RSA

public key. Encrypted key and

label of RSA public key are

stored in the header of the

encrypted file.

z800 and z900 v CCF (for RSA modulus-exponent

form keys with modulus length

less than or equal to 1024 bits)

v PCICC (for RSA Chinese

Remainder Theorem keys with

modulus length less than or equal

to 1024 bits)

v CCF and PCICC with LIC January

2005 or later and z990 and z890

Enhancements to Cryptographic

Support Web deliverable (ICSF

HCR770B) or later for RSA keys

with up to 2048 bit modulus

z890 and z990 PCIXCC or CEX2C

z9 109 CEX2C

Software requirements

Software requirements for Encryption Facility are as follows:

Encryption Services and DFSMSdss Encryption: Encryption Services and the

DFSMSdss Encryption features of Encryption Facility for z/OS require the following:

v z/OS (5694-A01) or z/OS.e (5655-G52) V1.4 or later release.

v PTF for z/OS DFSMS APAR OA09868 and QSAM APAR OA13571.

v z/OS Cryptographic Services - Integrated Cryptographic Services Facility with

z990 Cryptographic Support Web deliverable (FMID HCR770A) or later release.

Some hardware features require the z990 and z890 Enhancements to

Cryptographic Support Web deliverable (FMID HCR770B or later release). For

ICSF levels and FMIDs, see Table 5 on page 9.

RACF (optional): The PTF for APAR OA13030 is required to:

v Specify the PKDS labels to be used when storing public or private keys in the

PKDS

v List the PKDS labels of existing certificates

v Use the RACF RACDCERT command to allow the storage of internal RSA public

keys in the ICSF PKDS

DFSMSdss Encryption (optional):

DFSMSdss Encryption feature requires:

v The DFSMSdss priced feature of z/OS V1.4 or z/OS.e V1.4 or later release

v PTF for z/OS DFSMS APARs OA13300, OA13453, APAR OA13571, and

OA13687

Encryption Facility for z/OS Client (optional):

Encryption Facility Client requires the following:

 To run on z/OS, one of the following is required:

8 Encryption Facility for z/OS:: User’s Guide

|
|
|
|
|
|
|
|
|
|
|

– IBM SDK for z/OS, Java 2 Technology Edition, 5655-I56, at PTF UQ90449 or

higher (SDK1.4.2)

– IBM Developer Kit for OS/390®, Java 2 Technology Edition, 5655-D35, at

PTF UQ88094 or higher (SDK1.3.1)

 To run on other platforms, one of the following is required:

– Sun SDK 5.0

– An IBM JVM at SDK1.4.2

– A JVM with a JCE cryptographic provider installed that supports all the

required algorithms. See Encryption Facility Client documentation for details

on the algorithms, modes, and padding schemes needed.

For complete information, including PTF requirements for iSeries™ or other

platforms, see the README file in the Java reference code for Encryption Facility

for z/OS Client from the following Web site: http://www.ibm.com/servers/eserver/
zseries/zos/downloads/#asis

Table 5 summarizes the ICSF support for Encryption Facility by FMID and z/OS or

z/OS.e release:

 Table 5. Summary of ICSF support for Encryption Facility

ICSF level z/OS or z/OS.e release required plus

appropriate PTFs

FMID

z990 Cryptographic Support V1.4 or V1.5 HCR770A

z/OS 1.6 (part of the base) V1.6 HCR770A

z990 and z890 Enhancements

to Cryptographic Support

V1.4 or V1.5 HCR770B

ICSF 64-bit Virtual Support for

Z/OS V1.6 and z/OS.e V1.6

V1.6 HCR7720

z/OS 1.7 (part of the base) V1.7 HCR7720

Cryptographic Support for z/OS

V1R6/R7 and z/OS.e V1R6/R7

V1.6 or V1.7 HCR7730

Chapter 1. Overview of IBM Encryption Facility for z/OS 9

http://www.ibm.com/servers/eserver/zseries/zos/downloads/#asis
http://www.ibm.com/servers/eserver/zseries/zos/downloads/#asis

10 Encryption Facility for z/OS:: User’s Guide

Chapter 2. Getting started

This chapter describes installation tasks and considerations for getting started using

IBM Encryption Facility for z/OS:

v “How do I install IBM Encryption Facility for z/OS?”

v “Getting started with Encryption Services”

v “Getting started with ICSF”

v “Getting started with Encryption Facility for z/OS Client” on page 14

v “Getting started with DFSMSdss Encryption” on page 14

v “Getting started with RACF” on page 14

How do I install IBM Encryption Facility for z/OS?

You can install Encryption Facility and use any of the following optional features:

v Encryption Services

v DFSMSdss Encryption

You can download Encryption Facility for z/OS Client from the World Wide Web.

The following steps are a summary of how to install Encryption Facility. These steps

provide only a broad description. For installation information, see the IBM

Encryption Facility for z/OS: Program Directory. For hardware and software

requirements for Encryption Facility, see “Hardware and software requirements” on

page 6.

1. Ensure that you have the Web Deliverable ″Integrated Cryptographic Services

Facility with z990 Cryptographic Support Web deliverable (FMID HCR770A) or

later release installed on your z/OS system

2. Order and install program product, 5655-P97 (IBM Encryption Facility for z/OS)

3. Apply any service from PSP Buckets.

4. Optional: Download Encryption Facility for z/OS Client through click through

license from the following Web site:http://www.ibm.com/servers/eserver/zseries/
zos/downloads/#asis

Getting started with Encryption Services

You can use Encryption Services to encrypt and decrypt data on z/OS. Encryption

Services is an SMP/E installable program.

SYS1.SAMPLIB: You can find DDDEF and ALLOC jobs for the Encryption Services

in the following SYS1.SAMPLIB members:

v CSDDDDEF for DDDEF

v CSDALLOC for ALLOC

For information about Encryption Services, see Chapter 3, “Encrypting files through

CSDFILEN of Encryption Services,” on page 15 and Chapter 4, “Decrypting files

through CSDFILDE of the Encryption Services,” on page 31.

Getting started with ICSF

If you have ICSF installed, see “Software requirements” on page 8 to ensure that

you are using the required level for Encryption Facility.

© Copyright IBM Corp. 2005, 2006 11

http://www.ibm.com/servers/eserver/zseries/zos/downloads/#asis
http://www.ibm.com/servers/eserver/zseries/zos/downloads/#asis

If you need information about installing, planning, and implementing ICSF, see the

following publications:

v z/OS Cryptographic Services ICSF Overview

v z/OS Cryptographic Services ICSF System Programmer’s Guide

v z/OS Cryptographic Services ICSF Administrator’s Guide

Encryption Facility makes use of ICSF to manage cryptographic keys for encrypted

data.

ICSF supports the following cryptographic standards and architectures:

v IBM Common Cryptographic Architecture (CCA) that is based on the ANSI Data

Encryption Standard (DES)

v Advanced Encryption Standard (AES).

Cryptographic keys: In the secret key cryptography system based on DES, two

parties share secret keys that are used to protect data and keys that are exchanged

on the network. Sharing secret keys establishes a secure communications channel.

The only way to protect the security of the data in a shared secret key

cryptographic system is to protect the secrecy of the secret key.

ICSF also supports triple DES encryption for data privacy. TDES triple-length keys

use three, single-length keys to encipher and decipher the data. This results in a

stronger form of cryptography than that available with single DES encipherment.

With AES, data can be encrypted and decrypted using 128-bit, 192-bit, and 256-bit

clear keys. CBC and ECB encryption are also supported.

For public key cryptography, ICSF supports both the Rivest-Shamir-Adelman (RSA)

algorithm 1, and the NIST Digital Signature Standard algorithm. RSA is one of the

most widely used public key encryption algorithms. In this system, each party

establishes a pair of cryptographic keys, which includes a public key and a private

key. Both parties publish their public keys in a reliable information source, and

maintain their private keys in secure storage.

Cryptographic keys and Encryption Facility: Encryption Facility makes use of

TDES triple-length keys and 128–bit AES keys for data encryption. On a system

with secure cryptographic hardware, you can use Encryption Facility to generate

TDES and AES keys and encrypt them for protection through RSA public keys. On

systems without secure cryptographic hardware, a password allows the generation

of clear TDES and AES keys. The use of these cryptographic keys with Encryption

Facility depends on the kind of processor and the type of cryptographic hardware

that you have installed. See Table 4 on page 6.

Generating and placing an RSA key in the PKDS: RSA public and private keys

for encryption can be stored in the ICSF public key data set (PKDS). These RSA

keys are used by Encryption Facility to protect the symmetric keys that protect the

data. You can specify multiple RSA keys as input to Encryption Services or

Encryption Facility for z/OS Client and copy and distribute the resulting output file to

multiple recipients. You can also use ICSF callable services to generate RSA keys

and place them in the PKDS. The required ICSF callable services are CSNDPKB

PKA key token build and CSNDPKG PKA key generate.

CSNDPKB builds a skeleton PKA token. The principal parameters are as follows:

v Rule array

12 Encryption Facility for z/OS:: User’s Guide

|
|
|

v Key Value Structure (KVS)

v Generated Key Token (KeyToken) .

For example, the parameters for the generation of a skeleton key token for a 1024

bit RSA private key are as follows:

v PKB_RULE = ″RSA-PRIVKEY-MGMT″

v PKB_KVS = “0400000000030000010001”

v PKB_KeyToken = (generated)

CSNDPKG generates key values for the PKA token. The principal parameters are

as follows:

v Rule array

v Skeleton key identifier (SkelKey)

v Generated key identifier (GenKey)

For example, the parameters for a 1024 bit RSA private key are as follows:

v PKG_RULE = ″MASTER″

v PKG_SkelKey = PKB_KeyToken

v PKG_GenKey = “THIS.CAN.BE.A.PKDS.LABEL”

If you specify a PKDS key label for GenKey, ICSF writes the token to the PKDS.

Using the ICSF utility panels to create or delete PKDS records and import or

export RSA keys: You can use ICSF utility panels to create or delete PKDS

records and export or import RSA keys to an x.509 certificate. You use x.509

certificates to certify the transmission of the RSA public keys between senders and

receivers of encrypted data. For information about using digital certificates, see

“Using RACF to store keys, manage PKDS labels, and send digital certificates” on

page 47.

Coprocessor Requirements for using the ICSF utility panels: To use the full

function of the PKDS key management functions with the ICSF utility panels, you

must have a PCICC, PCIXCC, or a CEX2C cryptographic coprocessor. If you do not

have one of these coprocessors, you cannot generate key pairs using the panels.

For information about using the ICSF utility panels, see “Using ICSF utilities panels

for PKDS key management” on page 65. For complete information about using

ICSF utility panels and services, see z/OS Cryptographic Services ICSF

Administrator’s Guide.

ICSF uses the following ICSF callable services to create or delete PKDS records

and export or import RSA keys to x.509 certificates:

v CSNDKRR (ensures that the specified PKDS label does not already exist)

v CSNDPKB (builds the skeleton key token)

v CSNDKRC (creates the PKDS record)

v CSNDKRD (deletes the PKDS record)

v CSNDKRR (reads the record from the PKDS)

v CSNDPKX (extracts only the public key from the record)

v CSNBOWH (hashes the to-be-signed portion of the generated certificate)

v CSNDDSG (signs the hash)

If you are using RACF or similar security product, ensure that the security

administrator authorizes ICSF to use these services and any cryptographic keys

Chapter 2. Getting started 13

|
|
|
|
|
|
|

|
|
|
|

|
|
|
|

|
|

|

|

|

|

|

|

|

|

|
|

that are input. For information about ICSF callable services, see z/OS

Cryptographic Services ICSF Application Programmer’s Guide.

Getting started with Encryption Facility for z/OS Client

You can use Encryption Facility for z/OS Client to encrypt and decrypt z/OS format

data on non-z/OS platforms.

Encryption Facility for z/OS Client is licensed Java reference code that you can

download and use with Encryption Facility. The Java program allows you to encrypt

and decrypt data that you can transfer between different systems and for archiving

purposes.

You can download the Java reference code for Encryption Facility for z/OS Client

from the following Web site:http://www.ibm.com/servers/eserver/zseries/zos/
downloads/#asis. You can use a free decrypt-only download of Encryption Facility

for z/OS Client available from the Web site.

Be sure to read the README file for complete information about software

requirements including any PTFs for iSeries or other platforms.

For overview information, see Chapter 5, “Using Encryption Facility for z/OS Client,”

on page 39.

Getting started with DFSMSdss Encryption

You can use DFSMSdss Encryption of Encryption Facility to perform the encryption

of output data sets from the DFSMSdss DUMP command to tape or DASD. You

can decrypt the data through the DFSMSdss RESTORE command. With this

feature you can also use the DFSMShsm dump class settings to encrypt data

dumped through the BACKVOL DUMP command and automatic dump processing.

You can use the DFSMShsm RECOVER command to decrypt the data.

See Chapter 6, “Using DFSMSdss Encryption,” on page 43.

Getting started with RACF

RACF APAR

For this release of Encryption Facility, you need to ensure that the RACF PTF

for APAR OA13030 for z/OS 1.4 or later release systems is installed to be

able to use the RACF enhancements for the product.

 You can use RACF to help you store RSA public and private keys for encryption in

the ICSF public key data set (PKDS). You can also specify the PKDS labels to use

when you store public or private keys in the PKDS and can list PKDS labels of

public/private key pairs from existing certificates that reside in the RACF database.

The certificate management services of RACF allow you to establish a limited

scope certificate authority for your internal and external users, issuing and

administering digital certificates in accordance with your own organization’s policies.

For information about using RACF to store keys and generate labels, see

Chapter 7, “Using RACF with Encryption Facility,” on page 47.

14 Encryption Facility for z/OS:: User’s Guide

|
|

http://www.ibm.com/servers/eserver/zseries/zos/downloads/#asis
http://www.ibm.com/servers/eserver/zseries/zos/downloads/#asis

Chapter 3. Encrypting files through CSDFILEN of Encryption

Services

This chapter presents information about using the CSDFILEN batch program of

Encryption Services to encrypt data.

CSDFILEN is the batch program of Encryption Services that encrypts input data

files. Depending on the kind of processor and cryptographic coprocessor, you can

specify options to use clear key or secure key encryption, specify options for key

protection, and indicate if you want to compress the data before it is to be

encrypted.

JCL DD statements for CSDFILEN

CSDFILEN supports the following DD statements or their dynamic allocation

equivalents:

 Table 6.

DD statement Description

SYSPRINT Specifies the name of the data set to which CSDFILEN writes encryption statistics and

diagnostics information. It can be a sequential data set as follows:

v Typically a sysout data set

v DASD or tape data set

v PDS or PDSE member

CSDFILEN sets the following values:

v RECFM=FBA

v LRECL=133

The system selects an optimal value for BLKSIZE unless you choose to code BLKSIZE.

BLKSIZE must be a multiple of 133 unless it is a sysout DD statement, but coding

BLKSIZE on a sysout DD statement is not beneficial.

SYSIN Specifies the source from which CSDFILEN reads control statements. It can be a

sequential data set as follows:

v Typically a spooled system input data set

v ONE of the following specifications:

– DASD or tape data set

– PDS or PDSE member

CSDFILEN requires the following specifications:

v RECFM=F or FB

v LRECL=80

© Copyright IBM Corp. 2005, 2006 15

Table 6. (continued)

DD statement Description

SYSUT1 Specifies the name of the data set that contains data to be encrypted. It can be a

sequential data set as follows:

v DASD or tape data set

v PDS or PDSE member

v z/OS UNIX Systems Services file

The input to CSDFILEN can also be a system input data set, that is if you code * or DATA

on the DD statement. Unlike the other types of input, a dynamic allocation equivalent of this

data set does not exist.

CSDFILEN can read data sets created with BSAM, QSAM, BPAM or EXCP.

You must first unload VSAM data in order to encrypt it.

For z/OS UNIX Systems Services files, consider the following coding practices:

v Code the PATH keyword and PATHOPTS=ORDONLY.

v Do not code FILEDATA=TEXT so that CSDFILEN can read the data without character

conversion.

v Do not code variable block (VB) for BLKSIZE.

For all types of input consider the following for record format and DCB information:

v The data set or file can have any record format (RECFM).

v If the data set label (whether on DASD or tape) contains the DCB information, you do

not have to code RECFM, LRECL or BLKSIZE on the DD statement.

v If you plan to decrypt the file to a z/OS UNIX Systems Services file or send the file to a

non-z/OS system, code RECFM=U so that you get the maximum length of records for

better efficiency.

Normally DASD data sets and standard labelled tapes have the correct DCB information. If

the record format is not available in the data set label and you do not code RECFM on the

DD statement, CSDFILEN assumes RECFM=U (undefined format). If the block size is not

available from the data set label and you do not code BLKSIZE on the DD statement,

CSDFILEN assumes the maximum block size supported by the device. If this block size

value is much larger than the sizes of the real blocks, the program might run more slowly

than you expect.

IBM suggests that if the input is an unlabeled dump tape created by DFSMSdss, you code

BLKSIZE=60000, which is a little larger than the largest block expected.

If CSDFILEN is using a record format of fixed or variable and the record length is not

available from the data set label and you do not code LRECL on the DD statement,

CSDFILEN fails.

16 Encryption Facility for z/OS:: User’s Guide

Table 6. (continued)

DD statement Description

SYSUT2 Specifies the name of the data set that is to contain the encrypted data. It can be a

sequential data set as follows:

v DASD or tape data set

v PDS or PDSE member

CSDFILEN forces RECFM=U. You can specify the maximum block size by coding the

BLKSIZE or BLKSZLIM keyword. With either keyword, if the value exceeds the maximum

supported by the device, CSDFILEN reduces the value. If you do not code a value,

CSDFILEN assumes the optimal value for the device. For information about these values,

see the INFO=AMCAP option of the DEVTYPE macro in z/OS DFSMSdfp Advanced

Services.

If you want to copy the file containing the encrypted data to another device (for example,

you specify a tape data set on SYSUT2 but later copy the data set to DASD), you might

want to code BLKSIZE to reflect a block size that is applicable to the other device (for

example, 23476 for DASD).

The following list is a summary of default block sizes depending on the kind of specified

device:

v If the device is DASD, the default block size is a half track.

v If the device is an IBM 3590 or a newer tape device, the default block size is 256 KB.

v If the device is an IBM 3480 or 3490 Tape Subsystem or an IBM Virtual Tape Server, the

default block size is 65535. Note that this data set cannot be an ANSI/ISO standard

labelled tape or a tape for which OPTCD=Q is specified. In either case, the system

requires the data to be character data and performs character conversion, which thereby

destroys encrypted data.

DO NOT specify DISP=MOD for the SYSUT2 data set on CSDFILEN. You might

encounter an error when you try to decrypt the data through CSDFILDE.

Control statement keywords for CSDFILEN SYSIN DD

You can specify the following options in the control statement data set (identified by

SYSIN DD) to control encryption of the input files. All keywords must start in column

1, and you cannot code a continuation statement. The program treats an asterisk (*)

in column 1 as a comment. If you specify the same keyword multiple times, the

program uses the last specification:

 Table 7.

Description JCL keyword

Descriptive text

DESC=’text’

Specifies 1 to 64– EBCDIC character bytes of descriptive text to

be placed in the header record. CSDFILEN places the information

in the header record. The information is used to assist in

identifying the source of the encrypted data in the output. You

must enclose the text in single quotation marks. Imbedded blanks

are allowed. All text must be included on one control statement

line. DESC is optional.

Chapter 3. Encrypting files through CSDFILEN of Encryption Services 17

Table 7. (continued)

Description JCL keyword

Encryption type Specifies information about which encryption key you want Encryption

Services to generate. You can specify one of the following types. If you do

not specify an option, the default is CLRTDES:

CLRTDES

Specifies that the input file is to be encrypted with a clear TDES

triple-length key.

CLRAES128

Specifies that the input file is to be encrypted with a clear 128-bit

AES key.

ENCTDES

Specifies that the input file is to be encrypted with a secure TDES

triple-length key.

Method to generate and protect the data

encrypting key

Specifies the method to be used to generate and protect the data

encrypting key. RSA and PASSWORD are mutually exclusive. One of the

following keywords is required:

RSA=label

Specifies the 64-byte label of an existing RSA public key that is in

the ICSF PKDS. The program uses this key to encrypt the

data-encrypting key. The corresponding RSA private key must be

present at the recovery site when you decipher the data. RSA=

can point to an RSA key that contains both a private and a public

key, or you can specify the name of the corresponding RSA private

key when you invoke CSDFILDE or Encryption Facility for z/OS

Client at the recovery site.

 For Encryption Services you can use from 1 to 16 RSA= keywords

to specify from 1 to 16 public key labels. Depending on the

number of multiple RSA labels, you can send the encrypted file to

up to 16 individual recipients.

 For how to specify multiple RSA key labels, see “Specifying

multiple RSA keys” on page 21.

PASSWORD=password

Specifies the 8- to 32- EBCDIC character password to be used to

generate a clear TDES triple-length key or a clear 128-bit AES key.

Leading and trailing blanks and tab characters are removed;

imbedded blanks and tab characters are allowed. Passwords are

case sensitive.

 You can specify this option on systems that do not have secure

cryptographic hardware (for example, for z890, z990 or z9-109

processors that only use CPACF).

 In order to minimize problems because of code page differences at

the encrypting and decrypting sites, IBM suggests that you use

only the upper and lower-case letters A through Z, numerals 0 – 9

and the underscore character (_).

18 Encryption Facility for z/OS:: User’s Guide

|
|
|
|
|
|
|
|
|

|
|
|
|

|
|

Table 7. (continued)

Description JCL keyword

Number of iterations

ICOUNT=nnnnn

When you specify a password, specifies the number of iterations

that the SHA-1 hash algorithm is to be performed in the generation

of the data key and the initial chaining vector (ICV) for encryption.

nnnnn is an integer between 1 and 10000. If you do not specify

ICOUNT, the default is 16.

 ICOUNT allows you to strengthen security when you use

PASSWORD. If you specify a robust password (32 random

characters), the default is sufficient. See “Specifying the ICOUNT

value” on page 21.

Compression option

COMPRESSION=NO|YES

Specifies whether you want compression of the clear input before

encryption of the data occurs. COMPRESSION=NO indicates that

compression does not occur. COMPRESSION=YES causes

compression to be performed before encryption. If you do not

specify the COMPRESSION keyword, the default is NO.

User guidelines and samples for encrypting data

Guidance information includes the following topics:

v “When should I use CLRTDES or ENCTDES?”

v “Using PASSWORD and RSA options” on page 20

v “Specifying multiple RSA keys” on page 21

v “Using RSA keys and digital certificates” on page 21

v “Specifying the ICOUNT value” on page 21

v “When should I compress data for encryption?” on page 21

v “Verifying encryption files when you archive” on page 22

v “Using Encryption Facility and UNIX pipes” on page 22

Reference information includes the following topics and samples:

v “Format of the header record for the CSDFILEN output file” on page 22

v “Format of the statistics report file for CSDFILEN” on page 24

v “Return codes for CSDFILEN” on page 27

v “JCL Examples for CSDFILEN” on page 28

When should I use CLRTDES or ENCTDES?

The decision on whether to use CLRTDES or ENCTDES key values depends on

the kind of cryptographic hardware you have, the level of security you want, and the

level of performance.

For Encryption Facility, a CLRTDES key is a triple-length TDES key that the service

generates dynamically. Unlike the ENCTDES key value the CLRTDES key value

can appear in application storage. If Encryption Facility is running on a z890, z990,

or System z9 109, CSDFILEN encrypts the data using the clear TDES key on the

CPACF. This usually results in better performance than if you are using the

ENCTDES key value.

Chapter 3. Encrypting files through CSDFILEN of Encryption Services 19

|

The ENCTDES key is a triple-length TDES key that the service generates within the

secure boundary of the cryptographic hardware (CCF, PCICC, PCIXCC, or CEX2C),

and it uses the ICSF symmetric master key to encrypt the data. The clear value of

an ENCTDES key never leaves the boundary of the secure cryptographic hardware.

Encryption and decryption of data using an ENCTDES key requires secure

cryptographic hardware to be available.

Each type of key is equally secure in regards to the data that appears in the output

file of the CSDFILEN statistics report file; that is, CSDFILEN does not write any

clear key information to the file.

Using PASSWORD and RSA options

PASSWORD and RSA options for the encrypted data depend on the processor and

cryptographic hardware that you have installed. Base your decisions on the security

requirements of the data and on your available hardware.

PASSWORD option: Generally, if you do not have secure cryptographic hardware

installed, you can specify the PASSWORD keyword. Passwords are case sensitive.

RSA option: Consider using the RSA keyword that makes use of public/private

keys for encryption and the exchange of digital certificates. You specify the label of

the public key that is stored in the ICSF PKDS on the RSA option when you encrypt

the data. The corresponding RSA private key must be present at the recovery site

when you decipher the data. A recipient on another site can decrypt the data

through the private key that is specified on the RSA option for CSDFILDE.

Optionally, the recipient can decrypt the data through the private key that is

specified by the –keyStoreCertificateAlias argument of the Encryption Facility for

z/OS Client; see “Using RSA keys and certificates” on page 39. You can specify

multiple RSA keys as input.

See “Control statement keywords for CSDFILDE SYSIN DD” on page 33.

RSA private tokens: When you use the RSA option with CSDFILEN to encrypt the

data-encrypting key, you must consider the cryptographic hardware that exists at

the site that decrypts the data. All types of RSA private keys are not supported by

all types of cryptographic hardware. Table 8 summarizes the RSA private tokens

and required cryptographic hardware for decryption. For details, see z/OS

Cryptographic Services ICSF Application Programmer’s Guide:

 Table 8. RSA private tokens and required cryptographic hardware

RSA private key token (internal) Required cryptographic hardware

RSA private key token 1024

Modulus-Exponent Internal form

One of the following:

v Cryptographic Coprocessor Feature

v PCI X Cryptographic Coprocessor

v Crypto Express2 Coprocessor

RSA private key token 1024 Chinese

Remainder Theorem Internal form

One of the following:

v PCI Cryptographic Coprocessor

v PCI X Cryptographic Coprocessor

v Crypto Express2 Coprocessor

20 Encryption Facility for z/OS:: User’s Guide

|
|
|

|
|
|
|
|
|
|
|
|
|

Table 8. RSA private tokens and required cryptographic hardware (continued)

RSA private key token (internal) Required cryptographic hardware

RSA private key token 2048 Chinese

Remainder Theorem Internal form

One of the following:

v PCI Cryptographic Coprocessor with LIC

January 2005 or later and z/OS ICSF

HCR770B or later

v PCI X Cryptographic Coprocessor

v Crypto Express2 Coprocessor

Specifying multiple RSA keys

You can specify multiple RSA control statements. Each control statement identifies

the label of one RSA public key in the ICSF PKDS. CSDFILEN supports up to 16

public key labels.

For each RSA public key, Encryption Services creates an identifier that is to be

associated with the key. The RSA identifier allows CSDFILDE to associate an RSA

private key with the correct RSA key information in the header record of the

encrypted output file. To decrypt the file that uses the RSA option, you must specify

the RSA= control statement with the label of the RSA private key on CSDFILDE or

specify the -keyStoreCertificateAlias parameter for the RSA private key on

Encryption Facility for z/OS Client. CSDFILDE supports only one RSA= control

statement. The statistics report file for CSDFILEN includes any RSA= control

statements that you specify as input.

Using RSA keys and digital certificates

When you use RSA for cryptographic key management instead of PASSWORD

(derived key option), digital certificates form the basis of the key exchange. The

″public keys″ that are stored in the ICSF PKDS are almost always derived from

digital certificates. You can use your own program to store public and private RSA

keys and manage certificates, but if you use RACF, the RACDCERT command

allows you to perform the following functions:

v Store internal public/private RSA keys in the ICSF PKDS

v Manage PKDS labels for the keys

v Establish a limited scope certificate authority for your users

See Chapter 7, “Using RACF with Encryption Facility,” on page 47.

Specifying the ICOUNT value

The iteration count (ICOUNT) in Password Based Encryption (PBE) is intended to

strengthen weak passwords. The default of 16 provides reasonable security and

performance if the password is robust (that is, 32 random characters). Most PBE

schemes assume that you choose a weak password; thus, iteration counts of 1000

or higher are often normal.

When should I compress data for encryption?

When you plan to archive large amounts of encrypted data, you might consider

compressing the data (for example, to reduce the number of tape volumes you

might need).

Chapter 3. Encrypting files through CSDFILEN of Encryption Services 21

|

|
|
|

|
|
|
|
|
|
|
|
|

Some tape devices make use of their own compression when you store data.

Encrypted data is not highly compressible, so you might want to compress your

data before encryption using the COMPRESSION option of Encryption Services.

If you plan to use Encryption Facility for z/OS Client to decrypt z/OS data, note that

it cannot decrypt data that has been compressed from the CSDFILEN batch

program.

Encryption Facility is able to compress 64 K bytes or more of data. If you try to

compress less than that amount, the statistics report output for CSDFILEN indicates

that 0 bytes of data have been compressed. If you try to decompress the data

through CSDFILDE, the statistics report output for CSDFILDE indicates that 0 bytes

have been expanded.

Verifying encryption files when you archive

Before you send any files that you encrypt to other systems for archiving, verify that

you can decrypt the file on the same system where you encrypted it. Also, be sure

to retain your keys for encrypted data especially if you plan to archive the data for a

long time. See Chapter 4, “Decrypting files through CSDFILDE of the Encryption

Services,” on page 31.

Using Encryption Facility and UNIX pipes

You can utilize a UNIX pipe to improve performance of Encryption Services if you

have a utility that writes data to a data set and the data set is to be input to

Encryption Services. Instead of using an intermediate file or data set, you can make

use of a UNIX pipe to pipe the data directly to the Encryption Services. As a result,

you might obtain significant performance improvements for UNIX Systems Services

applications.

UNIX pipes are supported wherever you use either a fixed or undefined record

format file for the pipe data set, as long as the JCL provides appropriate values for

LRECL, BLKSIZE, and RECFM on the DD statement. For example, the following

DD statement defines a fixed record format for a UNIX pipe that another application

has created and opened for writing:

//SYSUT1 DD PATH=’/tmp/temppipe’,

// LRECL=4160,BLKSIZE=4160,RECFM=FB,

// DSNTYPE=PIPE,

// FILEDATA=BINARY,

// PATHOPTS=(ORDONLY),

// PATHMODE=SIRWXU

For complete information about UNIX pipes, see z/OS UNIX System Services

User’s Guide.

Format of the header record for the CSDFILEN output file

The output of the CSDFILEN program contains the encrypted data with a header

record that contains the information you need for the CSDFILDE program or

Encryption Facility for z/OS Client to decrypt the data. Table 9 shows the format of

the header record:

 Table 9.

Offset

(Decimal)

Name of Header

field

Type of

data Description

0 HEADER_EYE Character Eyecatcher: ″HEADER″ in EBCDIC.

22 Encryption Facility for z/OS:: User’s Guide

|
|
|
|
|

|
|
|
|
|
|

|
|

||

|
|
|
|
|
||

||||

Table 9. (continued)

Offset

(Decimal)

Name of Header

field

Type of

data Description

6 HDR_VERSION Character Version of the header record for Encryption Facility.

8 HDR_DESC Character EBCDIC description (DESC keyword) of CSDFILEN input file.

72 HDRLEN Integer Length of entire header record (integer format).

76 HDRSALT Character 8-byte field (salt value) used with password.

84 HDRICNT Integer Iteration count (ICOUNT keyword), integer format from 1 - 10000

to be used with password.

88 HDRKEYLN Character Modulus length (hexadecimal format from 512 – 2048) in bits of

the RSA public/private key taken from the RSA keyword

information.

90 HDRRSA Character 64-byte label (RSA keyword) of the RSA public/private key in

ICSF PKDS.

154 HDRICV Character Initialization chaining vector to be used with

encryption/decryption.

170 Reserved for IBM use.

174 HDAESDES Bit Type of key to be used to encrypt/decrypt data:

v x’01’ use a clear TDES triple–length key

v x’02’ use a clear 128-bit AES key

v x’03’ use a secure TDES triple–length key .

175 HDRFLAGS Bit Bit string that indicates type of output, compression options, and

format of encrypted data:

v Bit 0 = ’1’b: unused

v Bit 1 = ’1’b: indicates output data compressed

v Bit 2 = ’1’ b: indicates compression dictionary is present in the

encrypted data

v Bit 3 = ’1’b: indicates clear data is binary

v Bit 3 = ’0’b: indicates clear data is text (not used by z/OS) .

176 HDR_COMPVER Character Version of Encryption Facility compression used.

178 HDRIRECF Bit Input file record format:

v Bit 0 = ’1’b, Bit 1 = ’0’b: Fixed

v Bit 0 = ’0’b, Bit 1 = ’1’b: Variable

v Bit 0 = ’1’b, Bit 1 = ’1’b: Undefined

v Bit 3 = ’1’b: Blocked records

v Bit 5 = ’1’b: ASA control character

v Bit 6 = ’1’b: Machine control character.

179 HDRIRECL Integer Input file logical record length

181 HDRIBLKS Integer Input file block size

185 HDRORECF Bit Output file record format:

v Bit 0 = ’1’b, Bit 1 = ’0’b: Fixed

v Bit 0 = ’0’b, Bit 1 = ’1’b: Variable

v Bit 0 = ’1’b, Bit 1 = ’1’b: Undefined

v Bit 3 = ’1’b: Blocked records

v Bit 5 = ’1’b: ASA control character

v Bit 6 = ’1’b: Machine control character.

186 HDRORECL Integer Length of output file logical record.

Chapter 3. Encrypting files through CSDFILEN of Encryption Services 23

|

|
|
|
|
|
||

||||

||||

||||

||||

||||
|

||||
|
|

||||
|

||||
|

||||

||||

|

|

|

||||
|

|

|

|
|

|

|

||||

||||

|

|

|

|

|

|

||||

||||

||||

|

|

|

|

|

|

||||

Table 9. (continued)

Offset

(Decimal)

Name of Header

field

Type of

data Description

188 HDROBLKS Integer Output file block size.

192 HDR_KEYVAL Integer Encrypted data-encrypting key.

448 Reserved for IBM use.

464 HDR_RSA_CNT Integer Applies only when the ″HEADER″ is version X'0002' or

greater: Number of RSA= control statements.

468 HDR_RSA Character Applies only when the ″HEADER″ is version X'0002' or

greater: An array consisting of information for multiple RSA=

control statements. The length is variable based on the number

of RSA= control statements with each entry 344 bytes in length.

HDR_RSA_LAB Character An element of HDR_RSA consisting of a 64-byte label of one of

the RSA public/private keys in ICSF PKDS.

532 HDR_KEY_LN Character An element of HDR_RSA consisting of Modulus length

(hexadecimal format from 512 - 2048) in bits of the RSA

public/private key in this entry.

534 Character Two-byte placeholder of HDR_RSA.

536 HDR_KEY_VAL Character An element of HDR_RSA consisting of the hexadecimal

encrypted data-encrypting key. This value is encrypted by the

RSA key in this entry.

792 HDR_RSA_TAG Character An element of HDR_RSA consisting of a hexadecimal value

used for validation.

812 End of Header record.

Format of the statistics report file for CSDFILEN

 The output of the statistics report file depends on whether the encrypted data has

been compressed.

COMPRESSION=NO: The following example shows the output of the statistics

report file from CSDFILEN when compression is not specified

(COMPRESSION=NO):

 CSDFILEN Encryption Utility 09/28/2005 (MM/DD/YYYY) 12:43:38 (HH:MM:SS)

 INPUT: DESC=’DATA TO SEND TO PARTNER’

 INPUT: RSA=CCA.PVT06.INT.ENC.1024S0F

 INPUT: COMPRESSION=NO

 CSDFILEN: RSA-PUB : CCA.PVT06.INT.ENC.1024S0F

 INPUT: LRECL 121 BLKSIZE 484 RECFM FB

 OUTPUT: BLKSIZE 32760

 ENCRYPTION OF DATA: CLEAR TDES KEY USING CPACF

 RECORDS READ: 22,653 WRITTEN: 88

 BYTES READ: 2,741,013

 BYTES WRITTEN: 2,877,408 WITH HEADER AND PAD

 CIPHER TIMES (IN SECONDS): HIGH: 0.001969 DATA: 306704 LOW: 0.000747 DATA: 116600

 TOTAL CIPHER TIME (IN SECONDS): 0.018274 CIPHERS: 10

 TOTAL ELAPSED TIME: 0:00:04.12

COMPRESSION=YES: The following example shows the output of the statistics

report file from CSDFILEN when compression is specified (COMPRESSION=YES):

24 Encryption Facility for z/OS:: User’s Guide

|

|
|
|
|
|
||

||||

||||

||||

||||
|

||||
|
|
|

||||
|

||||
|
|

||||

||||
|
|

||||
|

||||
|

CSDFILEN Encryption Utility 09/28/2005 (MM/DD/YYYY) 12:51:20 (HH:MM:SS)

INPUT: DESC=’COMPRESSED DATA FOR FILE XYZ’

INPUT: CLRAES128

INPUT: PASSWORD=********************************

INPUT: COMPRESSION=YES

 CSDFILEN: :

INPUT: LRECL 121 BLKSIZE 484 RECFM FB

OUTPUT: BLKSIZE 32760

ENCRYPTION OF DATA: CLEAR AES KEY USING CSNBSYE

 RECORDS READ: 22,653 WRITTEN: 25

 BYTES READ: 2,741,013

 BYTES WRITTEN: 789,376 WITH HEADER AND PAD

CIPHER TIMES (IN SECONDS): HIGH: 0.003655 DATA: 123376 LOW: 0.000880 DATA: 29968

 TOTAL CIPHER TIME (IN SECONDS): 0.022709 CIPHERS: 10

 TOTAL COMPRESS TIME (IN SECONDS): 0.232279 TOTAL COMPRESS BYTES: 723,320

 TOTAL ELAPSED TIME: 0:00:02.43

If you try to compress less than 64 K of data, CSDFILEN does not compress the

data, and the statistics report indicates the following for COMPRESS BYTES:

COMPRESS BYTES: 0

See “When should I compress data for encryption?” on page 21.

Multiple RSA control statements: The following example shows the output of the

statistics report file from CSDFILEN that includes the maximum of 16 RSA label

definitions:

Chapter 3. Encrypting files through CSDFILEN of Encryption Services 25

|
|
|

CSDFILEN Encryption Utility 02/15/2006 (MM/DD/YYYY) 18:21:

INPUT: *--

INPUT: * ENC4: Multiple RSA + CLRTDES Encryption + Compression

INPUT: *--

INPUT: DESC=’Multiple RSA + CLRTDES Encryption + Compression’

INPUT: RSA=RSA.ME02.512.PRIV.KEYMGMT.CLEAR

INPUT: RSA=RSA.514.PUBLIC

INPUT: RSA=RSA.799.INTERNAL.PRIVATE.TOKEN

INPUT: RSA=RSA.ME06.513.PRIV.KMONLY

INPUT: COMPRESSION=YES

INPUT: RSA=RSA.ME06.651.PRIV.KEYMGMT

INPUT: RSA=RSA.ME06.1023.PRIV.KEYMGMT

INPUT: RSA=RSA.ME06.1024.PRIV.KMONLY

INPUT: RSA=RSA.CRT08.512.PUB.KEYMGMT.CLEAR

INPUT: RSA=RSA.CRT08.675.PRIV.KMONLY.CLEAR

INPUT: CLRTDES

INPUT: RSA=RSA.CRT08.1024.PRIV.KEYMGMT

INPUT: RSA=RSA.CRT08.1243.PRIV.KMONLY.CLEAR

INPUT: RSA=RSA.CRT08.1666.PRIV.KEYMGMT.CLEAR

INPUT: RSA=RSA.CRT08.2048.PUB.KEYMGMT.CLEAR

INPUT: RSA=RSA.CRT08.PRIV.1536.BIT.MODULUS

INPUT: RSA=RSA.ME06.PRIV.830.BIT.MODULUS

INPUT: RSA=RSA.ME06.PRIV.833.BIT.MODULUS

 CSDFILEN: RSA-PUB : RSA.ME02.512.PRIV.KEYMGMT.CLEAR

 CSDFILEN: RSA-PUB : RSA.514.PUBLIC

 CSDFILEN: RSA-PUB : RSA.799.INTERNAL.PRIVATE.TOKEN

 CSDFILEN: RSA-PUB : RSA.ME06.513.PRIV.KMONLY

 CSDFILEN: RSA-PUB : RSA.ME06.651.PRIV.KEYMGMT

 CSDFILEN: RSA-PUB : RSA.ME06.1023.PRIV.KEYMGMT

 CSDFILEN: RSA-PUB : RSA.ME06.1024.PRIV.KMONLY

 CSDFILEN: RSA-PUB : RSA.CRT08.512.PUB.KEYMGMT.CLEAR

 CSDFILEN: RSA-PUB : RSA.CRT08.675.PRIV.KMONLY.CLEAR

 CSDFILEN: RSA-PUB : RSA.CRT08.1024.PRIV.KEYMGMT

 CSDFILEN: RSA-PUB : RSA.CRT08.1243.PRIV.KMONLY.CLEAR

 CSDFILEN: RSA-PUB : RSA.CRT08.1666.PRIV.KEYMGMT.CLEAR

 CSDFILEN: RSA-PUB : RSA.CRT08.2048.PUB.KEYMGMT.CLEAR

 CSDFILEN: RSA-PUB : RSA.CRT08.PRIV.1536.BIT.MODULUS

 CSDFILEN: RSA-PUB : RSA.ME06.PRIV.830.BIT.MODULUS

 CSDFILEN: RSA-PUB : RSA.ME06.PRIV.833.BIT.MODULUS

INPUT: LRECL 252 BLKSIZE 32760 RECFM FB

OUTPUT: BLKSIZE 32760

ENCRYPTION OF DATA: CLEAR TDES KEY USING CCF

 RECORDS READ: 679 WRITTEN: 4

 BYTES READ: 171,108

 BYTES WRITTEN: 100,564 WITH HEADER AND PAD

CIPHER TIMES (IN SECONDS): HIGH: 0.000164 DATA: 94592 LOW: 0.000164 DATA: 94592

 TOTAL CIPHER TIME (IN SECONDS): 0.000164 CIPHERS: 1

 TOTAL COMPRESS TIME (IN SECONDS): 0.092435 TOTAL COMPRESS BYTES: 29,047

 TOTAL ELAPSED TIME: 0:00:20.82

Understanding the statistics report

In the statistics report, the line that starts CIPHER TIMES (IN SECONDS): shows the

longest time (HIGH) that the program takes to encipher a chunk of data and the

number of bytes of clear data that are in that chunk. CIPHER TIMES (IN SECONDS)

also shows the shortest time (LOW) that the program takes to encipher a chunk of

data, and the number of bytes in that chunk. For example if the statistics report

contains the following line:

 CIPHER TIMES (IN SECONDS): HIGH: 0.003655 DATA: 123376 LOW: 0.000880 DATA: 29968

the longest amount of time taken for a single encipher is .003655 seconds to

encipher a block of 123376 bytes. The shortest amount of time taken for a single

encipher is .000880 seconds to encipher a block of 29968 bytes.

26 Encryption Facility for z/OS:: User’s Guide

||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|

CSDFILEN diagnostics

CSDFILEN might write diagnostic information to the statistics report file.

The following error line begins with the characters **ERROR** and indicates that

more than 16 RSA= keywords are specified. CSDFILEN discontinues processing:

 RSA SPECIFIED MORE TIMES THAN THE ALLOWED MAXIMUM

Each of the following error lines begins with the characters **ERROR** and ends

the processing of CSDFILEN:

DISP=MOD NOT ALLOWED

DESCRIPTION TEXT MUST BE ENCLOSED IN SINGLE QUOTES

SPECIFY ONE OF RSA/PASSWORD ONLY

ONE OF RSA/PASSWORD MUST BE SPECIFIED

ENCTDES NOT VALID WITH PASSWORD

ITERATION COUNT NOT VALID

UNEXPECTED ERROR DURING COMPRESSION (RETCODE=nn)

SYSUT1 FILE FAILED TO OPEN

SYSUT2 FILE FAILED TO OPEN

MULTIPLE ENCRYPTION TYPES SPECIFIED

PASSWORD ENTERED NOT VALID

RECORD FORMAT FOR SYSUT2 NOT VALID. RECFM(U) IS REQUIRED.

CONFLICTING LRECL, BLKSIZE, AND RECFM

PRODUCT DEREGISTRATION FAILED

CSDFILEN might also write the following diagnostic information (beginning with the

characters **INFO**) to the statistics report file:

CSNBOWH possible SAF authority violation

Compression warnings and errors: The following error lines occur together and

begin with the characters **WARNING**. They indicate that because of the

randomness of the input data, compression does NOT reduce the size of the output

file. This is a minor error. CSDFILEN disables compression, but encryption of the

data continues:

WARNING MINOR ERROR OCCURRED BUILDING THE COMPRESSION DICTIONARY.

WARNING ENCRYPTION CONTINUING WITHOUT COMPRESSION.

The following error lines occur together and begin with the characters **ERROR**.

They indicate that an unrecoverable error occurred during compression. This is a

major error, and CSFDFILEN cannot continue processing. Turn off compression and

rerun the job:

ERROR CATASTROPHIC ERROR WHILE BUILDING THE COMPRESSION DICTIONARY.

ERROR PROCESSING HALTED, RERUN WITHOUT COMPRESSION.

ICSF callable services and diagnostics: If CSDFILEN invokes an ICSF callable

service and that service encounters a failure, CSDFILEN writes the following

diagnostic information to the statistics report file. In this example, the service

CSNDSYI was invoked and returned a return code of 8 and a reason code of

X'271C'. For information about ICSF return codes and reason codes, see z/OS

Cryptographic Services ICSF Application Programmer’s Guide.

ERRORCSNDSYI 08 00271C

Return codes for CSDFILEN

CSDFILEN can issue the following return codes (decimal values in general register

15):

Chapter 3. Encrypting files through CSDFILEN of Encryption Services 27

|

|
|

|

|

|
|
|
|
|

|
|

|
|
|
|

|
|

|

Table 10.

Return code Meaning

0 Successful operation

8 User error

20 Physical error occurred on input file

24 Physical error occurred on output file

28 SYSPRINT file failed to open

32 SYSUT1 file failed to open

36 SYSUT2 file failed to open

50 Product registration/deregistration failed

CSDFILEN can also return the following return codes that the ICSF callable service

passes back to the routine. In this case, the return code and reason codes from the

ICSF service are also recorded in the statistics report file:

 Table 11.

Return code Meaning

4 Warning

8 Application error

12 CSF error

16 Terminating error

JCL Examples for CSDFILEN

Example 1: In this example CSDFILEN reads data from a DASD data set named

LAB.MASTER DATA. It creates an encrypted version in a DASD data set named

LAB.MASTER.DATA.SAFE. The SYSIN options are for a z800 or z900 processor

with CCF or a z890 or z990 with PCIXCC or CEX2C, or z9 109 processor with

CEX2C. The options include a description for the encrypted data, a request to

generate a secure triple-length TDES key (ENCTDES) protected in the header with

a public RSA key:

//ENCRYPT1 EXEC PGM=CSDFILEN

//SYSPRINT DD SYSOUT=*

//SYSUT1 DD DSN=LAB.MASTER.DATA,DISP=SHR

//SYSUT2 DD DSN=LAB.MASTER.DATA.SAFE,

// UNIT=SYSDA,DISP=(NEW,CATLG),

// SPACE=(1024,(60,10)),AVGREC=K

//SYSIN DD *

DESC=’My Secure Data’

ENCTDES

RSA=ICSFEHN.RSAPUB

/*

//

Example 2: In this example CSDFILEN reads data from a DASD data set named

LAB.MASTER DATA. It creates an encrypted version in a DASD data set named

LAB.MASTER.DATA.SAFE. The SYSIN options are for a z800 or z900 processor

with CCF or a z890 or z990 with PCIXCC or CEX2C, or z9 109 processor with

CEX2C. The options include a description for the encrypted data, a request to

generate a secure triple-length TDES key (ENCTDES) protected in the header with

multiple (5) RSA keys:

28 Encryption Facility for z/OS:: User’s Guide

|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|

//ENCRYPT1 EXEC PGM=CSDFILEN

//SYSPRINT DD SYSOUT=*

//SYSUT1 DD DSN=LAB.MASTER.DATA,DISP=SHR

//SYSUT2 DD DSN=LAB.MASTER.DATA.SAFE,

// UNIT=SYSDA,DISP=(NEW,CATLG),

// SPACE=(1024,(60,10)),AVGREC=K

//SYSIN DD *

DESC=’My Secure Data’

ENCTDES

RSA=ICSFEHN.RSAPUB

RSA=RSA.ME02.512.PRIV.KEYMGMT.CLEAR

RSA=RSA.514.PUBLIC

RSA=RSA.799.INTERNAL.PRIVATE.TOKEN

RSA=RSA.ME06.513.PRIV.KMONLY

/*

//

Example 3: In this example CSDFILEN reads data from an IBM standard labeled

tape data set named ADRDSSU.DUMPFILE, which is a cataloged data set. In the

case of multiple volumes, CSDFILEN allocates two drives to improve performance.

It creates an encrypted version on another tape whose volume serial is ARCHIV.

The system adds the name of the resulting data set to the system catalog. The

SYSIN options are for a z800 or z900 processor with CCF or a z800, z900, or z9

109 with CPACF. The options include a description for the encrypted data, a request

to generate a clear triple-length TDES key with a password. An iteration count is

also specified and the data is to be compressed.

//ENCRYPT2 EXEC PGM=CSDFILEN

//SYSPRINT DD SYSOUT=*

//SYSUT1 DD UNIT=(,2),DSN=ADRDSSU.DUMPFILE,DISP=OLD

//SYSUT2 DD UNIT=3590-1,DISP=(,CATLG),VOL=SER=ARCHIV,

// DSN=FILE.ARCHIVE

//SYSIN DD *

DESC=’My Secure Data’

CLRTDES

PASSWORD=1509TY6E

ICOUNT=3200

COMPRESSION=YES

/*

//

Example 4: In this example CSDFILEN reads data from a z/OS UNIX Systems

Services file named /u/Lab/experiments/test3. It creates an encrypted version on

scratch tapes to be retained. The output data set name is not to be added to the

system catalog. The volume serial number for the data set is indicated in the

messages for the job. The SYSIN options are for a z800 or z900 with CCF or a

z890, z990, or z9 109 processor with CPACF. For hardware encryption, 128-bit AES

must be enabled on the processor; otherwise, software encryption occurs. For a

z800 or z900 processor ICSF software performs the AES key processing. The

options include a description for the encrypted data, a request to generate a clear

128-bit AES key with a password. An iteration count is also specified:

//ENCRYPT3 EXEC PGM=CSDFILEN

//SYSPRINT DD SYSOUT=*

//SYSUT1 DD PATH=’/u/Lab/experiments/test3’,PATHOPTS=ORDONLY

//SYSUT2 DD UNIT=3490,DISP=(,KEEP),DSN=LAB.EXP.TEST3,

// VOL=(RETAIN,,,3)

//SYSIN DD *

DESC=’My Secure Data’

CLRAES128

PASSWORD=1509TY6E

ICOUNT=3200

/*

//

Chapter 3. Encrypting files through CSDFILEN of Encryption Services 29

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|

|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|
|
|

ICSF callable services for CSDFILEN

The Encryption Services invokes the following ICSF callable services for

CSDFILEN. If you are using RACF or similar security product, ensure that the

security administrator authorizes the Encryption Services to use the following

services and any cryptographic keys that are input. For information about the ICSF

callable services, see z/OS Cryptographic Services ICSF Application Programmer’s

Guide.

v CSFCKM Multiple clear key Import

v CSFENC Encipher

v CSFRNG Generate a random number

v CSFSYE Encipher using clear DES/AES key

v CSFPKE Public key encrypt

v CSFSYG Generate and wrap a symmetric key

v CSFSYX Export a symmetric key

v CSFOWH One-way hash

Encryption Services might use the following ICSF callable service without the need

for authorization:

v CSFXBC Convert binary string to character

30 Encryption Facility for z/OS:: User’s Guide

|

Chapter 4. Decrypting files through CSDFILDE of the

Encryption Services

This chapter presents information about using the CSDFILDE batch program of the

Encryption Services to decrypt data.

CSDFILDE is a batch program of the Encryption Services that decrypts encrypted

file output from CSDFILEN or Encryption Facility for z/OS Client. You can specify

the same options for key protection that were used when CSDFILEN or the

Encryption Facility for z/OS Client encrypted the file. You can also specify an option

(INFO) to provide information on the original clear key file information and the keys

to be used by decryption processing.

JCL DD statements for CSDFILDE

CSDFILDE supports the following DD statements or their dynamic allocation

equivalents:

 Table 12.

DD statement Description

SYSPRINT Specifies the name of the data set to which CSDFILDE writes encryption statistics and

diagnostics information. It can be a sequential data set as follows:

v Typically a sysout data set

v DASD or tape data set

v PDS or PDSE member

CSDFILDE sets the following values:

v RECFM=FBA

v LRECL=133

The system selects an optimal value for BLKSIZE unless you choose to code BLKSIZE.

BLKSIZE must be a multiple of 133 unless it is a sysout DD statement, but coding

BLKSIZE on a sysout DD statement is not beneficial.

SYSIN Specifies the source from which CSDFILDE reads control statements. It can be a

sequential data set as follows:

v Typically a spooled system input data set

v ONE of the following specifications:

– DASD or tape data set

– PDS or PDSE member

CSDFILDE requires the following specifications:

v RECFM=F or FB

v LRECL=80

SYSUT1 Specifies the name of the data set that contains the encrypted data to be decrypted. This is

the encrypted data from CSDFILEN or the Encryption Facility for z/OS Client. It can be a

sequential data set as follows:

v DASD or tape data set

v PDS or PDSE member

If you copy the file that is the output of CSDFILEN to another z/OS file, DO NOT change

the LRECL or RECFM DCB parameters.

© Copyright IBM Corp. 2005, 2006 31

Table 12. (continued)

DD statement Description

SYSUT2 Specifies the name of the output data set that contains the decrypted data. It can be a

sequential data set as follows:

v DASD or tape data set

v PDS or PDSE member

v z/OS UNIX Systems Services file

The output from CSDFILDE can also be a sysout data set (SYSOUT=x).

DISP: You can code any of the following values for DISP on SYSUT2:

v DISP=(NEW,CATLG). The data set did not exist before this job step. After the job step,

the system is to catalog and keep the data set.

v DISP=(NEW,KEEP). The data set did not exist before this job step. If the new data set is

not SMS-managed, the system is to keep the data set but does not catalog it so you

must keep track of the volume where the data set is to reside, including disk and tape.

If the new data set is SMS-managed, the system treats the data set as if you had coded

CATLG. On z/OS DASD data sets are usually SMS-managed.

v DISP=(NEW,PASS). The data set did not exist before this job step and a following job

step determines the final disposition of the data set.

v DISP=(MOD,xxxx) where the xxxx is CATLG, KEEP or PASS as described above. If the

data set did not exist before this job step, the system is to allocate the space for the data

set. The result is the same as if you had coded DISP=(NEW,xxxx). In this case, you

must also code SPACE.

If the data set existed before this job step, the system uses it and QSAM adds the new

records to the logical end of the existing data set. In this case, SPACE has no effect, but

if more space is needed, the system uses the secondary space amount, which is a

temporary override for the space. A subsequent program that appends more records if

needed uses the originally-coded secondary space amount.

RECFM and LRECL: You do not need to code RECFM or LRECL for SYSUT2. CSDFILDE

assumes that you want to use the original values for RECFM and LRECL for the clear data

set.

BLKSIZE and BLKSZLIM: You do not need to specify BLKSIZE for SYSUT2. Consider the

following situations:

v If the value for RECFM (record format) for the original data set whose encrypted output

is on SYSUT1 is undefined format (RECFM=U), the system calculates an optimal

BLKSIZE value for the device represented by the CSDFILDE output data set on

SYSUT2. For example, if the original clear data set for SYSUT1 is on tape and the new

clear data set for SYSUT2 is on disk, the original block size if specified on SYSUT2

might waste disk space or not work properly. Although you can specify BLKSIZE on

SYSUT2 to enforce a specific block size value, the value might be less than optimal.

Instead of BLKSIZE, consider coding a value for BLKSZLIM on SYSUT2. When you

code BLKSZLIM, the value sets an upper limit on the value for BLKSIZE that the system

automatically calculates for the device. Although for tape devices z/OS supports block

sizes that are greater than 32760 bytes, many programs (for example, programs that are

written before 2004) that need to read the tape data sets do not handle block sizes that

are greater than 32760. For any program that cannot handle block sizes greater than

32760, code BLKSZLIM=32760. The value for BLKSZLIM does not have to be a multiple

of the LRECL value.

v If the RECFM value is undefined format (RECFM=U) on SYSUT1 and you do not code

BLKSIZE on SYSUT2, CSDFILDE assumes the block size for the original clear data set.

Although this value might not be optimal for the device, CSDFILDE does not attempt to

reblock the data.

32 Encryption Facility for z/OS:: User’s Guide

|
|
|

|
|

|
|
|
|
|
|
|

|
|
|
|
|
|
|
|

|
|
|
|

Control statement keywords for CSDFILDE SYSIN DD

You can specify the following options in the control statement data set (identified by

SYSIN DD) to control decryption of the input files. All keywords must start in column

1, and you cannot code a continuation statement. The program treats an asterisk (*)

in column 1 as a comment.

All of the following keywords are optional unless the following conditions apply:

v You specified PASSWORD= as input to CSDFILEN. In this case you must supply

the correct password on the SYSIN control statement.

v The label of the RSA private key to be used to decrypt the data-encrypting key is

different from the label of the RSA public key used by CSDFILEN. In this case

you must supply the label of the RSA private key on the JCL statement for

CSDFILDE.

 Table 13.

Description JCL keyword

Method to generate and protect

the data encrypting key

Specifies the method that is used to generate and protect

the data encrypting key. RSA and PASSWORD are

mutually exclusive.

RSA=label

Specifies the 64-byte label of an RSA private key

that is in the ICSF PKDS. This RSA private key

that corresponds to the public key is used to

decrypt the data-encrypting key that is present in

the header record of the encrypted data from

CSDFILEN or Encryption Facility for z/OS Client.

 If you are decrypting data that is encrypted with a

single RSA= control statement and the RSA

private key label is the same as the RSA public

key label used to protect the data-encrypting key,

the RSA keyword is optional because the RSA key

label is stored in the header record. For data

encrypted with multiple RSA= control statements,

you must specify one RSA keyword for decryption

on CSDFILDE. CSDFILDE does not allow multiple

RSA keywords. See “Specifying multiple RSA

keys” on page 21.

PASSWORD=password

Specifies the 8- to 32-EBCDIC character

password to be used to regenerate the clear

TDES triple-length key or the clear 128-bit AES

key that is used for the data encryption. This

password must match that specified as input to

CSDFILEN or Encryption Facility for z/OS Client.

Passwords are case sensitive.

 In order to minimize problems because of code

page differences at the encrypting and decrypting

sites, IBM suggests that you use only the upper

and lower-case letters A through Z, numerals 0 –

9 and the underscore character (_) .

Chapter 4. Decrypting files through CSDFILDE of the Encryption Services 33

|
|

|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|
|

Table 13. (continued)

Description JCL keyword

Information only

INFO Specifies that file decryption is not to be

performed, but that information about the defaults

that CSDFILDE establishes is to be recovered and

written to the SYSPRINT file. When the

information is written, CSDFILDE processing ends.

This option is useful when you want to determine

the original clear text file DCB information and to

ensure that a specified RSA key is present in the

current ICSF system.

User reference information for decrypting data

Reference information includes the following topics and samples:

v “Format of the statistics report file for CSDFILDE”

v “Return codes for CSDFILDE” on page 36

v “JCL examples for CSDFILDE” on page 37

Format of the statistics report file for CSDFILDE

The output of the statistics report file depends on whether the encrypted data has

been compressed.

COMPRESSION=NO: The following example shows the output of the statistics

report file from CSDFILDE when compression has not been specified for the

encrypted data:

 CSDFILDE Decryption Utility 09/28/2005 (MM/DD/YYYY) 14:41:07 (HH:MM:SS)

 CSDFILDE: :

INPUT: DESC = DATA TO SEND TO PARTNER

INPUT: LRECL 121 BLKSIZE 484 RECFM FB

INPUT: PASSWORD=********************************

RECORDS READ: 88 WRITTEN: 22,653

 BYTES READ: 2,877,408 BYTES RECOVERED: 2,741,013

CIPHER TIMES (IN SECONDS): HIGH: 0.001949 DATA: 294840 LOW: 0.001462 DATA: 229320

 TOTAL CIPHER TIME (IN SECONDS): 0.018218 CIPHERS: 10

 TOTAL ELAPSED TIME: 0:00:02.23

COMPRESSION=YES: The following example shows the output of the statistics

report file from CSDFILDE when compression has been specified for the encrypted

data:

34 Encryption Facility for z/OS:: User’s Guide

CSDFILDE Decryption Utility 09/28/2005 (MM/DD/YYYY) 14:47:50 (HH:MM:SS)

 CSDFILDE: RSA-PUB : CCA.PVT06.INT.ENC.1024S0F

INPUT: DESC = DATA TO SEND TO PARTNER

INPUT: LRECL 121 BLKSIZE 484 RECFM FB

INPUT: RSA=CCA.PVT06.INT.ENC.1024S0F

RECORDS READ: 25 WRITTEN: 22,653

 BYTES READ: 789,368 BYTES RECOVERED: 2,741,013

CIPHER TIMES (IN SECONDS): HIGH: 0.001854 DATA: 294376 LOW: 0.001431 DATA: 229320

 TOTAL CIPHER TIME (IN SECONDS): 0.005120 CIPHERS: 3

 TOTAL EXPAND TIME (IN SECONDS): 0.037375 TOTAL EXPANDED BYTES: 2,760,344

 TOTAL ELAPSED TIME: 0:00:09.57

If the report indicates 0 for EXPANDED BYTES, an attempt to compress data that is

less than 64 K bytes probably occurred with CSDFILEN. See “When should I

compress data for encryption?” on page 21

If one or more RSA keywords have been specified for the encrypted data input, and

if the INFO keyword is specified as input to CSDFILDE, the output of the statistics

report file from CSDFILDE includes all of the RSA key labels (in the previous

example, CSDFILDE: RSA-PUB : CCA.PVT06.INT.ENC.1024S0F). If the

PASSWORD keyword has been specified for the encrypted data input, and if the

INFO keyword is specified as input to CSDFILDE, the output from CSDFILDE in the

statistics report file shows blanks in the second line as follows:

 CSDFILDE Decryption Utility 09/15/2005 (MM/DD/YYYY) 10:51:27 (HH:MM:SS)

 CSDFILDE: :

 INPUT: DESC = UR0.B32760 INPUT

 INPUT: LRECL 80 BLKSIZE 32720 RECFM FB

 INPUT: *--*

 INPUT: * INFO KEYWORD ONLY *

 INPUT: *--*

 INPUT: INFO

Understanding the statistics report

In the statistics report, the line that starts CIPHER TIMES (IN SECONDS) shows the

longest time (HIGH) that the program takes to decipher a chunk of data and the

number of bytes of clear data that are in that chunk. CIPHER TIMES (in seconds)

also shows the shortest time (LOW) that the program takes to decipher a chunk of

data, and the number of bytes in that chunk. For example if the statistics report

contains the following line:

 CIPHER TIMES (IN SECONDS): HIGH: 0.001854 DATA: 294376 LOW: 0.001431 DATA: 229320

the longest amount of time taken for a single decipher is .001854 seconds to

decipher a block of 294376 bytes. The shortest amount of time taken for a single

decipher is .001431 seconds to decipher a block of 229320 bytes.

In the line that starts TOTAL CIPHER TIME (IN SECONDS):, CIPHERS: indicates the

number of times CSDFILDE invokes an ICSF callable service to perform decryption.

In the following example, CSDFILEN invoked callable service CSNBDEC 17647

times:

 TOTAL CIPHER TIME (IN SECONDS): 32.842984 CIPHERS: 17,647

The value is not the same as the number of hardware instructions executed

because the hardware instruction processes a CPU-determined number of blocks,

Chapter 4. Decrypting files through CSDFILDE of the Encryption Services 35

|
|
|
|
|
|
|

||
|
|
|
|
|
|
|
|
|
|

|

each of which are a multiple of the algorithm length (8 bytes for TDES or 16 bytes

for AES). The system might require multiple invocations of the hardware instruction

to process one ″chunk″ of data that ICSF processes.

CSDFILDE diagnostics

CSDFILDE might write diagnostic information to the statistics report file. Each of the

following error lines begins with the characters **ERROR** and ends the processing

of CSDFILDE:

CONFLICTING OUTPUT LRECL

CONFLICTING OUTPUT RECFM

EOF REACHED ON INPUT FILE BEFORE END OF HEADER

SPECIFY ONE OF RSA/PASSWORD ONLY

PASSWORD MUST BE SPECIFIED

PASSWORD ENTERED NOT VALID

INCORRECT PASSWORD ENTERED

HEADER RECORD NOT VALID

UNEXPECTED ERROR DURING EXPANSION (RETCODE=nn)

SYSUT1 FILE FAILED TO OPEN

SYSUT2 FILE FAILED TO OPEN

UNSUPPORTED VERSION OF ENCRYPTED DATA

OUTPUT MUST SUPPORT QSAM LARGE BLOCK INTERFACE (LBI)

RECORD FORMAT FOR SYSUT1 NOT VALID. RECFM(U) IS REQUIRED.

PASSWORD NOT ALLOWED WITH RSA OPTION

PRODUCT DEREGISTRATION FAILED

The following diagnostic information (beginning with the characters **WARNING**)

indicates that the output data set (SYSUT2) of CSDFILDE has a different

BLKSIZE(nnnnnn) from the input data set (SYSUT1) specified on CSDFILEN.

CSDFILDE processing continues:

NEW OUTPUT BLKSIZE. REQUESTED: nnnnnn

CSDFILDE might also write the following diagnostic information (beginning with the

characters **INFO**) to the statistics report file:

CSNBOWH possible SAF authorization violation

ICSF callable services and diagnostics: If CSDFILDE invokes an ICSF callable

service and that service encounters a failure, CSDFILDE writes the following

diagnostic information to the statistics report file. In this example, the service

CSNDPKD was invoked and returned a return code of 8 and a reason code of

X'271C'. For information about ICSF return codes and reason codes, see z/OS

Cryptographic Services ICSF Application Programmer’s Guide.

ERRORCSNDPKD 08 00271C

Corrupted compression dictionary: A system abend code of 0C7 usually means

that the compressed data has not been decompressed because either the

compression dictionary or the data is corrupted.

Return codes for CSDFILDE

CSDFILDE can issue the following return codes (decimal values in general register

15):

 Table 14.

Return code Meaning

0 Successful operation

36 Encryption Facility for z/OS:: User’s Guide

Table 14. (continued)

Return code Meaning

4 Warning

8 User error

20 Physical error occurred on input file

24 Physical error occurred on output file

28 SYSPRINT file failed to open

32 SYSUT1 file failed to open

36 SYSUT2 file failed to open

40 Error reading header from input file

44 Bad data found during expansion of compressed data

48 No expansion dictionary in decrypted input data

50 Product registration/deregistration failed

CSDFILDE can also return the following return codes that the ICSF callable service

passes back to the routine. In this case, the return and reason codes from the ICSF

service are also recorded in the statistics report file:

 Table 15.

Return code Meaning

4 Warning

8 Application error

12 CSF error

16 Terminating error

JCL examples for CSDFILDE

Example 1: In this example CSDFILDE reads data from a DASD data set named

PARTNER.XYZ.ENCDATA. It writes the decrypted data to a DASD data set named

PARTNER.XYZ.INVENTORY, which did not previously exist. The system creates

and catalogs the data set. All of the defaults are used for the SYSIN options.

Because the original data has been encrypted with a CLRTDES key that is

protected with an RSA private key and the RSA key label is available in the header,

you do not need to specify RSA= if the PKDS of the decrypting system contains the

same RSA private key stored with the same label.

//DECRYPT EXEC PGM=CSDFILDE

//SYSPRINT DD SYSOUT=*

//SYSUT1 DD DSN=PARTNER.XYZ.ENCDATA,DISP=SHR

//SYSUT2 DD DSN=PARTNER.XYZ.INVENTORY,

// UNIT=SYSDA,DISP=(NEW,CATLG),

// SPACE=(1024,(60,10)),AVGREC=K

//SYSIN DD *

/*

//

Example 2: In this example CSDFILDE reads encrypted data from an IBM standard

labeled tape data set that is named XYZ.FILE.ARCHIV. The data set is also a

cataloged data set. CSDFILDE writes the decrypted data to a new tape data set

XYZ.DATA, on volume serial ARCHIV. This data set is added to the system catalog.

Because the original clear data was encrypted using PASSWORD, you must specify

the same password as input to the CSDFILDE program. The program retrieves the

Chapter 4. Decrypting files through CSDFILDE of the Encryption Services 37

iteration count and salt value used by CSDFILDE from the header record that is

contained in the SYSUT1 input file. It uses those values along with the password to

recover the clear key for decryption:

//DECRYPT2 EXEC PGM=CSDFILDE

//SYSPRINT DD SYSOUT=*

//SYSUT1 DD UNIT=3590,DSN=XYZ.FILE.ARCHIVE,DISP=OLD

//SYSUT2 DD UNIT=3590,DISP=(NEW,CATLG),VOL=SER=ARCHIV,

// DSN=XYZ.DATA

//SYSIN DD *

PASSWORD=ASK NOT FOR WHOM THE BELL TOLLS

/*

//

Example 3: In this example CSDFILDE reads data from a z/OS UNIX Systems

Services file named /u/Lab/encdata/partner3. It writes the decrypted data to an

existing data set, PARTNER3.INVENTORY, on a 3390 DASD volume named

CSDUS1. The original clear data has been encrypted with a key that is protected by

an RSA public key. The RSA private key that corresponds to the public key is stored

in the PKDS of this system with the label MY.PRIV.2048.KEY. Because this label is

different from the label of the RSA public key that has been used for encryption,

you must specify the label of the private key for RSA as input to the CSDFILDE

program.

//DECRYPT3 EXEC PGM=CSDFILDE

//SYSPRINT DD SYSOUT=*

//SYSUT1 DD PATH=’/u/Lab/encdata/partner3’,PATHOPTS=ORDONLY

//SYSUT2 DD DSN=PARTNER3.INVENTORY,

// UNIT=3390,VOL=SER=CSDUS1,DISP=OLD

//SYSIN DD *

RSA=MY.PRIV.2048.KEY

/*

//

ICSF callable services for CSDFILDE

 The Encryption Services invokes the following ICSF callable services for

CSDFILDE. If you are using RACF or similar security product, ensure that the

security administrator authorizes Encryption Services to use the following services

and any cryptographic keys that are specified as input to CSDFILDE. For

information about the ICSF callable services, see z/OS Cryptographic Services

ICSF Application Programmer’s Guide.

v CSFCKM Multiple clear key import

v CSFDEC Decipher

v CSFSYD Decipher using clear DES/AES key

v CSFOWH One-way hash

v CSFPKD Public key decrypt

v CSFSYI Import a symmetric key

Encryption Services might use the following ICSF callable service without the need

for authorization:

v CSFXBC Convert binary string to character

38 Encryption Facility for z/OS:: User’s Guide

Chapter 5. Using Encryption Facility for z/OS Client

This chapter presents information about using Encryption Facility for z/OS Client.

Encryption and decryption functions

Encryption Facility for z/OS Client works with the CSDFILEN and CSDFILDE

programs to perform the following functions:

v Decrypts data that is encrypted through the CSDFILEN program on z/OS

v Encrypts data that the CSDFILDE program is able to decrypt on z/OS

You can also transfer data that is encrypted by Encryption Facility for z/OS Client to

non–z/OS platforms and use Encryption Facility for z/OS Client to decrypt the data.

Installing the Java code

Before you use Encryption Facility for z/OS Client to encrypt or decrypt data on a

z/OS system, ensure that you perform the following steps:

1. Download Encryption Facility for z/OS Client zip file from the Java Web site to

where you want to run the program. See “Getting started with Encryption Facility

for z/OS Client” on page 14.

2. Extract the zip files and place the Java source on the z/OS system.

3. Compile the source code on z/OS.

Java classes: Encryption Facility for z/OS Client includes the following Java

classes:

v EncryptionFacility (application with options to encrypt or decrypt a binary file)

v Messages (class that contains the messages for Encryption Facility for z/OS

Client)

For complete information about these classes and the use of Encryption Facility for

z/OS Client, see the documentation in the JavaDocsPublic directory within the

downloadable zip file.

Using RSA keys and certificates

Using RSA keys: When you encrypt data through Encryption Facility for z/OS

Client, you can specify multiple RSA public keys through the

-keyStoreCertificateAlias parameter.

For example, you can use two RSA -keyStoreCertificateAlias parameters for

certificate1 and certficate2 as input for encryption:

-keyStoreCertificateAlias="certificate1 alias with imbedded blanks"

-keyStoreCertificateAlias="certificate2 alias with imbedded blanks"

You can specify up to 16 RSA key labels for encryption.

When you use Encryption Facility for z/OS Client to decrypt data, use the

-keyStoreCertificateAlias parameter to specify RSA labels. The decryption process

uses the public key portion of the RSA key that is specified by

-keyStoreCertificateAlias to identify the appropriate encrypted data encryption key

in the header. Encryption Facility for z/OS Client then uses the RSA private key to

unwrap the data encryption key.

© Copyright IBM Corp. 2005, 2006 39

|
|
|

|
|
|
|
|
|

To use RSA keys and certificates with the Java Client you must store your keys in a

Java keystore. The most common way to do this is with a utility called keytool. For

the documentation on the Java keytool utility, see the following Web site:

http://java.sun.com/j2se/1.4.2/docs/tooldocs/solaris/keytool.html

Using certificates: Generally speaking, what you need to do with keytool depends

on how you intend to use the Java Client.

v To send encrypted data to another system, you need the certificate of the other

system. For example, the following code shows how to import a certificate

(Acertfile.cer) from another system into your keystore:

keytool -import -alias sysA -file Acertfile.cer

v To receive encrypted data from another system, the other system needs your

certificate. For example, the following code shows how to create a keypair and

certificate in your keystore:

keytool -genkey -dname "CN=System B, OU=MyUnit, O=MyOrg, L=MyLocal,

S=MyState, C=MyCountry" -alias sysB

The following code shows how to export your certificate (Bcertfile.cer) from

your keystore to another system:

keytool -export -alias sysB -file Bcertfile.cer

Considerations using Encryption Facility for z/OS Client

Consider the following uses of Encryption Facility for z/OS Client for encrypting or

decrypting z/OS format data:

Java policy files: To run the Java application you need to copy the unrestricted

Java policy files to your Java Virtual Machine (JVM). This allows you to use large

key sizes.

Data compression: Encryption Facility for z/OS Client cannot compress data for

encryption. Also, Encryption Facility for z/OS Client cannot process encrypted data

that has been compressed by Encryption Facility on z/OS.

Encrypted data from CSDFILEN: Encryption Facility for z/OS Client cannot

decrypt data that is encrypted through encrypted keys (that is, if you have specified

the ENCTDES keyword on CSDFILEN when you encrypted the data).

Data conversions between systems: Encryption Facility does not handle data

conversions that need to take place between z/OS and non-z/OS systems. You

must handle all data conversions (for example, adding new line characters or

making ASCII, EBCDIC, and other kinds of code conversions).

Editing encrypted files on z/OS: Do not use an editor on z/OS to access a file

that has been encrypted with Encryption Facility for z/OS Client, or you might

corrupt the file format.

Record format and size: You can use Encryption Facility for z/OS Client to encrypt

data in fixed record format. Use –recordFormat and –recordSize as follows:

v To indicate a fixed record size, specify -recordFormat as FIXED and a valid

value for –recordSize. Allowable record sizes for FIXED record format are from 1

to 32760. Encryption Facility for z/OS Client encrypts the data according to the

specified record size and updates the header information to reflect that the data

is in fixed record format.

40 Encryption Facility for z/OS:: User’s Guide

|
|

|
|
|
|
|

v To indicate an undefined record size, use the default value or specify

UNDEFINED for –recordFormat. If you use the default value or specify

UNDEFINED for –recordFormat, you cannot specify a value for –recordSize. If

you specify a value for –recordSize, Encryption Facility for z/OS Client indicates

an exception.

Exchanging files between operating systems: If you are exchanging data

between the Java file system and z/OS, you must be aware of the file

characteristics (record format and length) for z/OS data. For example, if you encrypt

a file from z/OS that specifies the following characteristics on the JCL for

CSDFILEN

RECFM=FB,LRECL=252

then send the encrypted file to Encryption Facility for z/OS Client for decryption and

use the default or specify UNDEFINED on –recordFormat, the Java file system

strips out the information from the header. The result is a data stream with records

of length 32760. If you encrypt the data on the Java file system and send it back to

z/OS, the z/OS system cannot restore the original file characteristics because they

are no longer maintained in the header. To use CSDFILDE to decrypt the data on

z/OS, you must remember the original file characteristics and specify those

characteristics for the JCL on the data control block (DCB) parameter. You can use

INFO on CSDFILDE to display the original LRECL and BLKSIZE values that are in

the header of the encrypted file.

Chapter 5. Using Encryption Facility for z/OS Client 41

|
|
|
|
|

|
|
|
|
|

|

|
|
|
|
|
|
|
|
|
|

42 Encryption Facility for z/OS:: User’s Guide

Chapter 6. Using DFSMSdss Encryption

You can use DFSMSdss Encryption to encrypt and decrypt data through DFSMSdss

and DFSMShsm commands. For complete information, see z/OS DFSMS Storage

Administration Reference.

DFSMShsm documentation

For complete information about using DFSMShsm commands to encrypt and

decrypt data, see the following DFSMShsm publications:

v z/OS DFSMShsm Storage Administration Guide

v z/OS DFSMShsm Implementation and Customization Guide

For DFSMSdss you can use the DUMP command to encrypt an output data set and

specify that the encrypted data is to reside on tape or DASD. You can specify the

following options on the DUMP command:

 Table 16.

Description DUMP option

Encryption type

ENCRYPT

Specifies information about which encryption key you

want to generate. You can specify one of the

following types.

CLRTDES

Specifies that the input file is to be

encrypted with a clear TDES triple-length

key in the DFSMSdss address space

CLRAES128

Specifies that the input file is to be

encrypted with a clear 128-bit AES key

ENCTDES in the DFSMSdss address space

ENCTDES

Specifies that the input file is to be

encrypted with a secure TDES triple-length

key in the DFSMSdss address space

© Copyright IBM Corp. 2005, 2006 43

Table 16. (continued)

Description DUMP option

Method to generate and

protect the data encrypting

key

Specifies the method to be used to generate and protect the

data encrypting key. RSA and PASSWORD are mutually

exclusive. One of the following keywords is required:

RSA(label)

Specifies the 64-byte label of an existing RSA public

key that is present in the ICSF cryptographic key

data set (PKDS).

KEYPASSWORD(password)

Specifies a password between 8 and 32 characters

that is used to generate a data key to encrypt the

user data. If you specify KEYPASSWORD on the

DUMP command, you must also specify the same

KEYPASSWORD on the RESTORE command.

 IBM suggests that you use only the upper and

lower-case letters A through Z, numerals 0 – 9 and

the underscore character (_) .

Compression option

HWCOMPRESS

Specifies whether you want compression of the clear input

before encryption of the data occurs. If you want compression,

specify the keyword HWCOMPRESS. Omit the keyword if you

do not want compression.

To decrypt the data from the DUMP command, you can use the RESTORE

command with the following options:

 Table 17.

Description RESTORE option

Method used to generate and

protect the data encrypting

key

Specifies the method to be used to generate and protect the

data encrypting key. RSA and PASSWORD are mutually

exclusive:

RSA(label)

Specifies the 64-byte label of an existing RSA

private key that is present in the ICSF PKDS. The

RSA option on the RESTORE command is optional.

Use RSA if you want to specify a different label for

an RSA key. If you do not specify the RSA keyword

on the RESTORE command, DFSMSdss uses the

original label specified on the DUMP command.

KEYPASSWORD(password)

Specifies a password between 8 and 32 characters

that is used to generate a data key to encrypt the

user data. If KEYPASSWORD has been specified on

the DUMP command, you must also specify the

same KEYPASSWORD on the RESTORE

command.

 IBM suggests that you use only the upper and

lower-case letters A through Z, numerals 0 – 9 and

the underscore character (_) .

44 Encryption Facility for z/OS:: User’s Guide

JCL examples for DFSMSdss Encryption

Example 1: This example shows the JCL for encrypting data for a full volume dump

to tape:

//SYSIN DD *

 DUMP -

 FULL -

 INDD (-

 DC9SS01 -

) -

 ENCRYPT(CLRAES128) -

 HWCOMPRESS -

 RSA(CCA.CRT08.INT.ENC.1024S0F) -

 OUTDDNAME (DDTAPE1)

/*

Example2: This example shows the JCL for encrypting a logical dump data set and

decrypting the data through the RESTORE command:

//SYSIN DD *

 DUMP -

 DS(INCLUDE(SOURCE.**)) -

 LOGINDD (-

 DC9SS01 -

 DC9SS02 -

) -

 ENCRYPT(CLRTDES) -

 KEYPASSWORD(MYPASSWORD) -

 HWCOMPRESS -

 ALLDATA(*) -

 ALLEXCP -

 OUTDDNAME (DDTAPE1)

/*

//SYSIN DD *

 RESTORE -

 DS(INCLUDE(SOURCE.**)) -

 OUTDYNAM (-

 (T9SS01) -

 (T9SS02) -

 (T9SS03) -

) -

 KEYPASSWORD(MYPASSWORD) -

 RENAMEU(TARGET) -

 REPLACEU -

 STORCLAS(SC9TG016) -

 INDDNAME (DDTAPE1)

/*

Chapter 6. Using DFSMSdss Encryption 45

46 Encryption Facility for z/OS:: User’s Guide

Chapter 7. Using RACF with Encryption Facility

You can use RACF to help you store RSA public and private keys for encryption in

the ICSF public key data set (PKDS). You can also specify the PKDS labels to use

when you store public or private keys and can list PKDS labels of existing security

certificates as well as establish a PKI to manage the digital certificate authority for

users.

This chapter includes the following topics:

v “Using RACF to store keys, manage PKDS labels, and send digital certificates”

v “Using the RACDCERT command” on page 48

v “RACF messages and codes for Encryption Facility” on page 55

RACF APAR

To use the RACF enhancements for this release of Encryption Facility, ensure

that you have the PTF for APAR OA13030 installed on z/OS 1.4 or later.

Using RACF to store keys, manage PKDS labels, and send digital

certificates

Encryption Facility encrypts data for archival and recovery purposes. Long term

storage of archived encrypted data helps with disaster recovery. Moreover,

Encryption Facility allows you to safely transport encrypted data to interested

parties on other sites where it can be decrypted or stored for future use. RACF

provides public/private key support and the management of PKDS labels associated

with the keys for both archiving and recovery of the encrypted data. Through RACF,

you can also set up a limited scope certificate authority that allows you to exchange

key information for the encrypted data.

For data archival and recovery, the encryption and decryption process can make

use of the RSA public/private key pair. The public part is meant for encrypting data

that can be archived, and the private part for decrypting or recovering the data.

For data transit, the sending side needs to use the recipient’s public key to encrypt

the data, while the receiving side uses the corresponding private key of the

public/private pair to decrypt the data. The sender expects to receive the public key

of the recipient in the form of an x.509 certificate, and the sender needs to store the

public key, without the equivalent private key, in the ICSF PKDS.

If you are using RSA private/public keys to encrypt or decrypt data, you can make

use of RACF to allow you to exchange keys with the senders or recipients of the

data. This exchange involves using digital certificates to identify users and their

keys. You can also use ICSF utility panels to create or delete PKDS records and

export or import RSA keys to x.509 certificates. For a scenario, see “Using ICSF

utilities panels for PKDS key management” on page 65. For complete information,

see z/OS Cryptographic Services ICSF Administrator’s Guide.

RACF and certificates: RACF lets you create certificates with a private/public RSA

key pair for the decryption of data sent to you by another party. To accomplish this,

© Copyright IBM Corp. 2005, 2006 47

|
|
|
|

the sender must encrypt the data using your public key. Before encryption, this

public key needs to be sent to the other party enclosed in the certificate created by

RACF.

This certificate identifies you as the owner of the key pair. The other party can

receive the certificate and use RACF to create a PKDS label for the public key in

the other party’s ICSF PKDS. In addition, if you want to encrypt data to return to the

other party, a second key exchange must occur, where the other party creates the

key pair and sends you the public key certificate from that system.

Figure 3 shows how this exchange of certificates works with RSA keys that are

stored in the PKDS of the sending and receiving systems. On z/OS you can use

RACF to generate a digital certificate and key pair. You (the z/OS customer) send

the digital certificate to a receiver (the business partner) on a remote system who

can also use RACF or another program or service to create a digital certificate and

key pair and send the certificate to you.

Using the RACDCERT command

RACDCERT is used to install and maintain digital certificates, key rings, and digital

certificate mappings in RACF. RACDCERT should be used for all maintenance of

the DIGTCERT, DIGTRING, and DIGTNMAP class profiles. For complete

information, see z/OS Security Server RACF Command Language Reference.

For Encryption Facility, RACF provides the following support for the RACDCERT

command:

v RACDCERT ADD includes a new keyword PCICC in addition to the ICSF

keyword to allow user-defined PKDS labels.

v Changes exist to the description for RACDCERT GENCERT PCICC, ICSF, and

DSA keywords

v Changes exist to the description of the RACDCERT REKEY PCICC and ICSF

keywords.

Figure 3. Establishing a trusted exchange through digital certificates

48 Encryption Facility for z/OS:: User’s Guide

RACDCERT ADD(data-set-name)

 [TRUST | NOTRUST | HIGHTRUST]

 [WITHLABEL(’label-name’)]

 [PASSWORD(’pkcs12-password’)]

 [ICSF[(pkds-label | *)] | PCICC[(pkds-label | *)]]

[ICSF[(pkds-label | *)] | PCICC[(pkds-label | *)]

Specify that RACF should store the public or private key associated with this

certificate in the ICSF PKDS. This includes when the key is introduced to RACF

by issuing the ADD keyword and when an existing certificate profile is replaced

by issuing the ADD keyword. You can specify the PKDS label to be assigned to

the key (optional), or specify * if the PKDS label should be taken from the

WITHLABEL keyword. In either case, the PKDS label must be unique and meet

the ICSF syntax requirements (see notes below).

 These keywords only apply to public and private RSA keys created outside of

your ICSF environment.

 Either keyword is ignored if the key uses the DSA algorithm.

 If the certificate being added has an associated private key, the following action

takes place:

v If you specify ICSF, RACF stores the private key as an ICSF RSA

Modulus-Exponent key token.

v If you specify PCICC, RACF stores the private key as an ICSF RSA Chinese

Remainder Theorem (CRT) key token using the PCI cryptographic

coprocessor.

The latter is desirable for performance reasons and required for RSA private

keys between 1025 and 2048 bits in length. Certificates with private keys

greater than 2048 bits in length cannot be processed by RACF. For either

keyword, if ICSF is not operational or is not configured for PKA operations,

processing stops and RACF displays an error message. For PCICC, a PCI

class cryptographic coprocessor must also be present and operational.

 If you do not specify the PKDS label (or *), RACF generates a label in the

format IRR.DIGTCERT.userid.cvtsname.ebcdic-stck-value, where userid is the

owning user ID, cvtsname is the system name (taken from the CVT), and

ebcdic-stck-value is an EBCDIC version of the current store clock value.

 If the certificate being added does not have an associated private key (that is, it

only has a public key), the following action takes place:

v If you specify either keyword and you also specify the PKDS label (or *),

RACF stores the public key as an ICSF RSA Modulus-Exponent (ME) key

token.

v If you specify either keyword and you do not specify the PKDS label (or *),

RACF ignores the keyword (that is, a PKDS entry is NOT created).

For either keyword, if ICSF is not operational or is not configured for PKA

operations, processing stops and RACF displays an error message.

Notes:

1. If the private key is stored as an ICSF or PCICC key, any system using the

key in the future is required to have ICSF operational and configured for

Chapter 7. Using RACF with Encryption Facility 49

PKA operations with this PKDS. This includes SSL applications. Use of a

PCICC key also requires an operational PCI class cryptographic

coprocessor.

2. The default action for a new key is to store it as a software key. The default

action for an existing key is to leave it unchanged.

3. If the public or private key already exists in the PKDS, you cannot change

its PKDS label by using the ICSF or PCICC keywords to respecify the label.

4. If the private key already exists in the PKDS as an ICSF key, specifying

PCICC does not convert the key to a PCICC key.

5. If the private key already exists in the PKDS as a PCICC key, specifying

ICSF does not convert the key to an ICSF key.

6. If the public key already exists in the PKDS, and its matching private key

certificate is added, you must specify the ICSF or PCICC keyword. This

specification upgrades the PKDS entry to contain the ICSF or PCICC

private key.

7. If the PKDS label is specified with an asterisk (*), you must also specify the

WITHLABEL keyword.

8. If the PKDS label is specified or taken from the WITHLABEL keyword, it

must conform to ICSF label syntax rules as follows: Allowed characters are

alphanumeric, national (@,#,$) or period (.). The first character must be

alphabetic or national. The label has a maximum length of 64 characters

and is case insensitive (folded to upper case).

RACDCERT GENCERT[(request-data-set-name)]

 [SUBJECTSDN([C(’Country’)]

 [SP(’State or Province’)]

 [L(’Locality’)]

 [O(’Organization Name’)]

 [OU(’Organizational Unit Name 1’

 [,’Organizational Unit Name 2’]

 [,’Organizational Unit Name n’])]

 [T(’Title’)]

 [CN(’Common Name’)]]

 [SIZE(Key Size)]

 [NOTBEFORE([DATE(yyyy-mm-dd)] [TIME(hh:mm:ss)])]

 [NOTAFTER([DATE(yyyy-mm-dd)] [TIME(hh:mm:ss)])]

 [WITHLABEL(’Label Name’)]

 [SIGNWITH([SITE | CERTAUTH]

 LABEL(’Label Name’))]

 [KEYUSAGE(HANDSHAKE

 DATAENCRYPT

 DOCSIGN

 CERTSIGN)]

 [ALTNAME([IP(Numeric-IP-Address)]

 [EMAIL(’Email Address’)]

 [DOMAIN(Internet-Domain-Name)]

 [URI(Universal-Resource-Identifier)]]

 [ICSF[(pkds-label | *)] | PCICC[(pkds-label | *)] | DSA]

[ICSF[(pkds-label | *)] | PCICC[(pkds-label | *)] | DSA]

Specifies how RACF should generate the key pair and how the key should be

stored for future use.

 If GENCERT is issued without a request-data-set-name, the following action

takes place:

50 Encryption Facility for z/OS:: User’s Guide

v If you specify PCICC, RACF generates the key pair using a PCI class

cryptographic coprocessor.

v If you specify ICSF, RACF generates the key pair using software.

In either case, the resulting private key is generated with the RSA algorithm and

stored in the ICSF PKDS. For ICSF, RACF stores the private key as an ICSF

RSA Modulus-Exponent key token. For PCICC, RACF stores the private key as

an ICSF RSA Chinese Remainder Theorem (CRT) key token. The latter is

desirable for performance reasons and required for RSA private keys between

1025 and 2048 bits in length.

 You can optionally specify the PKDS label to be assigned to the key or specify

an asterisk (*) if the PKDS label should be taken from the WITHLABEL

keyword. In either case, the PKDS label must be unique and meet the ICSF

syntax requirements (see notes below).

 If either the PKDS label or asterisk (*) is not specified, RACF generates a label

in the format IRR.DIGTCERT.userid.cvtsname.ebcdic-stck-value, where userid

is the owning user ID, cvtsname is the system name (from the CVT), and

ebcdic-stck-value is an EBCDIC version of the current store clock value.

Note: If DSA is specified, the key pair is generated using software with DSA

algorithm, and RACF stores the private key in the RACF database as a

non-ICSF DSA key. DSA key generation can be very slow, especially for

keys greater than 1024 bits.

If you do not specify either of these keywords, RACF generates the key pair

using software with the RSA algorithm and stores the private key in the RACF

database as a non-ICSF key. If you specify either keyword PCICC or ICSF and

ICSF is not operational or is not configured for PKA operations, processing

stops and RACF displays an error message. If you specify the PCICC keyword,

you must ensure that a PCI class cryptographic coprocessor is present and

operational. Otherwise, processing stops and RACF displays an error message.

 If you issue GENCERT with a request-data-set-name, the following action

takes place:

v RACF does not generate a key-pair. The public key from the request is used

in the generated certificate. After the certificate is generated, processing for

the ICSF and PCICC keywords follows the same rules as those for

RACDCERT ADD.

v If you specify the DSA keyword with a request-data-set-name, RACF ignores

the DSA keyword.

Notes:

1. The DSA keyword is not available on z/OS V1.4, 1.5, or 1.6.

2. If the private key is stored as an ICSF or PCICC key, any system using the

key in the future is required to have ICSF operational and configured for

PKA operations with this PKDS. This includes SSL applications. Use of a

PCICC key also requires an operational PCI class cryptographic

coprocessor.

3. The default action for a new key is to store it as a software key.

4. If the public or private key already exists in the PKDS, you cannot change

its PKDS label by using the ICSF or PCICC keywords to respecify the label.

5. If the private key already exists in the PKDS as an ICSF key, specifying

PCICC does not convert the key to a PCICC key.

Chapter 7. Using RACF with Encryption Facility 51

6. If the private key already exists in the PKDS as a PCICC key, specifying

ICSF does not convert the key to an ICSF key.

7. If the PKDS label is specified with an asterisk (*), you must also specify the

WITHLABEL keyword.

8. If the PKDS label is specified or taken from the WITHLABEL keyword, it

must conform to ICSF label syntax rules as follows: Allowed characters are

alphanumeric, national (@,#,$) or period (.). The first character must be

alphabetic or national. The label has a maximum length of 64 characters

and is case insensitive (folded to upper case).

RACDCERT REKEY

 [SIZE(Key Size)]

 [NOTBEFORE([DATE(yyyy-mm-dd)] [TIME(hh:mm:ss)])]

 [NOTAFTER([DATE(yyyy-mm-dd)] [TIME(hh:mm:ss)])]

 [WITHLABEL(’Label Name’)]

 [ICSF[(pkds-label | *)] | PCICC[(pkds-label | *)]]

[ICSF[(pkds-label | *)] | PCICC[(pkds-label | *)]]

Specifies how RACF should generate the key pair and how the private key

should be stored for future use if the key algorithm of the original certificate is

RSA. If you specify PCICC, the key pair is generated using a PCI class

cryptographic coprocessor. If you specify ICSF, the key pair is generated using

software. In either case the resulting private key is generated with the RSA

algorithm, and RACF stores it in the ICSF PKDS.

 For ICSF, RACF stores the private key as an ICSF RSA Modulus-Exponent key

token. For PCICC, RACF stores the private key as an ICSF RSA Chinese

Remainder Theorem (CRT) key token. The latter is desirable for performance

reasons and required for RSA private keys between 1025 and 2048 bits in

length.

 You can optionally specify the PKDS label to be assigned to the key, or specify

an asterisk (*) if the PKDS label should be taken from the WITHLABEL

keyword. In either case, the PKDS label must be unique and meet the ICSF

syntax requirements (see notes below).

 If the key algorithm of the original certificate is DSA, the ICSF and PCICC

keywords are ignored. RACF generates the key pair using software with the

DSA algorithm and stores the private key in the RACF database as a non-ICSF

DSA key.

 If you do not specify either keyword, and if the key algorithm of the original

certificate is RSA, RACF generate the key pair using software with the RSA

algorithm and stores the private key in the RACF database as a non-ICSF key.

If you do not specify either keyword and ICSF is not operational or is not

configured for PKA operations, processing stops, and RACF displays an error

message. If you specify the PCICC keyword, a PCI class cryptographic

coprocessor must also be present and operational. Otherwise, processing

stops, and RACF displays an error message.

Notes:

1. The REKEY keyword is not available on z/OS V1.4 or 1.5.

2. If the private key is stored as an ICSF or PCICC key, any system using the

key in the future is required to have ICSF operational and configured for

52 Encryption Facility for z/OS:: User’s Guide

PKA operations with this PKDS. This includes SSL applications. Use of a

PCICC key also requires an operational PCI class cryptographic

coprocessor.

3. The default action for a new key is to store it as a software key.

4. If the PKDS label is specified as *, you must also specify the WITHLABEL

keyword.

5. If the PKDS label is specified or taken from the WITHLABEL keyword, it

must conform to ICSF label syntax rules as follows: Allowed characters are

alphanumeric, national (@,#,$) or period (.). The first character must be

alphabetic or national. The label has a maximum length of 64 characters

and is case insensitive (folded to upper case).

LIST [(LABEL(’label-name’))] | [(SERIALNUMBER(serial-number) [ISSUERSDN(’issuer’s-dist-name’)])]

LIST [(LABEL(’label-name’))] | [(SERIALNUMBER(serial-number) [

ISSUERSDN(’issuer’s-dist-name’)])]

Displays the digital certificate information, including certificate authority and site

certificate information. For each digital certificate defined, the following

information is displayed:

v Label

v Certificate ID

v Status (trusted, not trusted, or highly trusted)

v Validity dates

v Serial number

v Issuer’s distinguished name

v Up to 256 bytes of the subject’s name, as found in the certificate itself

v Extensions, if present (specifically, keyUsage and subjectAltName)

v Type of private key (ICSF, non-ICSF or PCICC), or NONE if there is no

private key

v Private key size

v PKDS label if the public or private key is stored in the ICSF PKDS

v Ring associations, if present (the ring name to which this certificate is

connected and the ring owner)

 The following sample is output from the RACDCERT LIST command that shows the

PKDS Label IRR.DIGTCERT.GEORGEM.SY1.BD7103108611F42F:

Chapter 7. Using RACF with Encryption Facility 53

Digital certificate information for user GEORGEM:

 Label: New Cert Type - Ser # 00

 Certificate ID: 2QfHxdbZx8XU1YWmQMOFmaNA46iXhUBgQOKFmUB7QPDw

 Status: TRUST

 Start Date: 1996/04/18 03:01:13

 End Date: 1998/02/13 03:01:13

 Serial Number:

 >00<

 Issuer’s Name:

 >OU=Internet Demo CertAuth.O=TheCert Software Inc.<

 Subject’s Name:

 >OU=Internet Demo CertAuth.O=TheCert Software Inc.<

 Private Key Type: ICSF

 Private Key Size: 1024

 PKDS Label: IRR.DIGTCERT.GEORGEM.SY1.BD7103108611F42F

 Ring Associations:

 Ring Owner: GEORGEM

 Ring:

 >GEORGEMsNewRing01<

 Ring Owner: GEORGEM

 Ring:

 >GEORGEMsRing<

See “Using the RACDCERT command for key and certificate management of

encrypted data” on page 64.

Considerations using RACDCERT

RACF database and PKDS in a sysplex: If you are sharing a RACF database in a

sysplex environment, you must ensure that you are also sharing the PKDS where

Encryption Facility resides. For example, if you use RACDCERT GENCERT to

generate an RSA key pair and you try to load the public key into the PKDS of

another partition that does not share the RACF database, RACF fails the command.

Archiving RSA key data: If you use RACF to create private key entries in the

PKDS for use with Encryption Facility, do not issue the following RACF commands

that might delete the PKDS entries:

v RACDCERT DELETE deletes a certificate from RACF and its corresponding

entry in the PKDS.

v DELUSER deletes any certificates owned by the user and any corresponding

entries in the PKDS.

v RACDCERT ROLLOVER command retires a certificate’s private key and deletes

its entry in the PKDS

As a precaution, backup the certificate and its private key before you place it in the

ICSF PKDS as follows:

1. Generate the certificate and key pair.

2. Export the pair to a data set in PKCS12 format (password protected).

3. Migrate the key to ICSF.

The following example shows the RACF commands you can use:

54 Encryption Facility for z/OS:: User’s Guide

RACDCERT GENCERT... /* Do not specify the ICSF, PCICC, or DSA keywords */

RACDCERT EXPORT(LABEL(’cert-label’)) DSN(backup-data-set-name) FORMAT(PKCS12DER) PASSWORD(’secret-password’)

RACDCERT ADD(backup-data-set-name) PASSWORD(’secret-password’) ICSF(pkds-label) | PCICC(pkds-label)

ICSF and RACDCERT: RACDCERT processing makes use of ICSF services. If

your installation has established access control over ICSF services, the issuers of

RACDCERT need to be granted READ authority to ICSF services as follows:

 Table 18. RACDCERT command authority and ICSF services

RACDCERT command Keywords ICSF Service Comments

GENCERT or REKEY v CSFRNG

Only required if

ICSF is active

GENCERT or REKEY PCICC v CSFPKG

v CSFPKX

GENCERT or REKEY ICSF or PCICC v CSFPKRC

v CSFPKRR

v CSFPKRW

GENCERT SIGNWITH v CSFDSG

Only required if the

signing certificate

has an ICSF or

PCICC key

DELETE v CSFPKRD

Only required if the

certificate being

deleted has an ICSF

or PCICC key

RACF messages and codes for Encryption Facility

The following messages might appear when you use the RACF support for

Encryption Facility:

IRRD159I The key size requires the use of a PCI

Cryptographic Coprocessor. The

PCICC keyword must be specified. The

request is not processed.

Explanation: You are attempting to generate or add a

certificate and its private key where the private key is to

be generated or saved as a software key. The private

key’s size is larger than what is allowed as a software

key and cannot be processed. However, RACF has

detected the presence of a PCI cryptographic

coprocessor (PCICC). The private key’s size may be

acceptable if processed as a PCICC key.

System action: The command is not processed.

User response: If you are generating a certificate and

a software key is required, reissue the command with a

smaller key size. Otherwise, if a PCICC key is

acceptable, reissue the command specifying PCICC.

For more information, see z/OS Security Server RACF

Command Language Reference.

RRD160I WITHLABEL value cannot be used as a

PKDS label .

Explanation: You are attempting to generate, add, or

rekey a certificate and store its key in the ICSF PKDS.

The WITHLABEL keyword was specified along with

either ICSF(*) or PCICC(*), indicating that the

WITHLABEL value should also be used for the PKDS

label. The WITHLABEL does not meet the syntax

requirements for a PKDS label. The allowed characters

are alphanumeric, national (@,#,$) or period (.).

Additionally, the first character must be alphabetic or

national.

System action: The command is not processed.

User response: Reissue the command with a

WITHLABEL value that meets ICSF requirements or

keep the WITHLABEL value you have and specify a

different value for the PKDS label in place of the

asterisk. For more information, see z/OS Security

Server RACF Command Language Reference.

Chapter 7. Using RACF with Encryption Facility 55

IRRD161I The certificate cannot be {added |

generated}. The PKDS label

‘pkds-label-value’ is already in use.

Explanation: You are attempting to generate, add, or

rekey a certificate and store its key in the ICSF PKDS.

The PKDS label value specified has already been

assigned to another PKDS entry. No two entries in the

PKDS can have the same label.

System action: The command is not processed.

User response: Reissue the command with a different

PKDS label value. For more information, see z/OS

Security Server RACF Command Language Reference.

IRRD162I The certificate cannot be {added |

generated}. The certificate’s key is

already stored under PKDS label

‘pkds-label-value’.

Explanation: You are attempting to renew or readd a

certificate and store its key in the ICSF PKDS. The

certificate’s key has already been saved in the PKDS

with the label displayed in the error message. The

PKDS label may not be respecified.

System action: The command is not processed.

User response: Reissue the command without

specifying a PKDS label value. For more information,

see z/OS Security Server RACF Command Language

Reference.

56 Encryption Facility for z/OS:: User’s Guide

Chapter 8. User scenarios

The following scenarios show some ways that you can use Encryption Facility to

encrypt and decrypt files and RACF to perform certificate exchange.

v “Encrypting data using z/OS and decrypting using Encryption Facility for z/OS

Client”

v “Using the RACDCERT command for key and certificate management of

encrypted data” on page 64

v “Using ICSF utilities panels for PKDS key management” on page 65

Also, see “JCL Examples for CSDFILEN” on page 28, “JCL examples for

CSDFILDE” on page 37, and “JCL examples for DFSMSdss Encryption” on page

45.

Encrypting data using z/OS and decrypting using Encryption Facility

for z/OS Client

The following scenarios describe encrypting files on z/OS and decrypting the files

on Encryption Facility for z/OS Client.

Scenario 1

In this scenario the JCL for CSDFILEN on z/OS specifies that the data is to be

encrypted using a password and a clear 128–bit AES key (CLRAES128). An

iteration count (ICOUNT) of 9 is also specified. On z/OS, the device type is a 3390,

the data set to be encrypted is a member of a partitioned data set (PO) with a

record format of FB, record length of 80, and a block size of 23440. The user saves

the encrypted file in the hierarchical file system (HFS) that an xSeries® system can

access.

© Copyright IBM Corp. 2005, 2006 57

|

//TESRENC JOB ((ENCRYPT,UC),’ZEF.TEST’,

 // NOTIFY=,MSGLEVEL=(1,1),MSGCLASS=H,

 // REGION=4M

 //*

 //***

 //*

 //* FOLLOWING JOB TAKES DATA FROM ONE DSN AND ENCRYPTS IT

 //* AND PLACES THE RESULT IN ANOTHER DATASET

 //*

 //*

 //***

 //*---

 //* ENCRYPT

 //* (ONLY MANDATORY ENTRY IS EITHER RSA OR PASSWORD)

 //*

 //*---

 //ENC EXEC PGM=CSDFILEN

 //SYSPRINT DD SYSOUT=*

 //*----------

 //STEPLIB DD DSN=ICSFTST.HCF7730.LINKLIB,DISP=SHR

 //SYSUDUMP DD SYSOUT=*

 //SYSOUT DD SYSOUT=*

 //SYSIN DD *

 DESC=’ENCRYPTION, PW length of 9 Mixedcase, fb data to java x-series’

 PASSWORD=pwOFNINE9

 ICOUNT=9

 CLRAES128

 /*

 //SYSUT1 DD DSN=TSTFLR6.FXT.CLIST(AMIOUT),DISP=SHR

 //SYSUT2 DD DSN=PAYROLL.G118.FB80.TOJEFF.SEP29T1,

 // UNIT=SYSDA,DISP=(NEW,CATLG),

 // SPACE=(1024,(60,10))

 /*

The user on the z/OS system copies the encrypted file to the HFS with the file

name PAYROLL.ZSERIES.ENCRYPTD (not shown).

On the Java statements for Encryption Facility for z/OS Client, the user on the

xSeries system specifies the same password used to encrypt the data to perform

decryption as follows. In this scenario Encryption Facility for z/OS Client

automatically detects the key used for the encryption and the iteration count:

 Table 19.

java -Djava.encryption.facility.debuglevel=0 \

com.ibm.encryptionfacility.EncryptionFacility \

-mode decrypt \

-password "pwOFNINE9" \

-inputFile PAYROLL.ZSERIES.ENCRYPTD \

-outputFile PAYROLL.XSERIES.DECRYPTD

Scenario 2

In this scenario, two files are encrypted through CSDFILEN on a z/OS system. The

files are encrypted using a CLRTDES data-encryption key. One file protects the

data-encryption key with an RSA public key extracted from the ICSF PKDS. The

other file uses a password to generate the data-encryption key used. The encrypted

files are sent to a system where Encryption Facility for z/OS Client decrypts the

files.

58 Encryption Facility for z/OS:: User’s Guide

Using RSA to encrypt on z/OS: CSDFILEN encrypts a file using a CLRTDES key

data-encrypting key. The data-encrypting key is then encrypted with an existing

RSA public key that is retrieved from ICSF PKDS with the label specified by RSA=.

//*--

//ENC EXEC PGM=CSDFILEN

//*----------

//SYSUDUMP DD SYSOUT=*

//SYSOUT DD SYSOUT=*

//*----------

//SYSPRINT DD DSN=USERID.ZEF.LISTING,DISP=(MOD,PASS)

//*----------

//SYSUT1 DD DSN=USERID.ZEF.CLR,DISP=SHR

//SYSUT2 DD DSN=USERID.ZEF.RSA,ENC,DISP=SHR

//SYSIN DD *

--

* RSA key encryption on z *

--

DESC=’TDES ENCRYPTED FILES USING 1023 BIT RSA KEY ’

RSA=IRR.DIGTCERT.ENICHEN.SYS1.BDA7284CD8F33AB2

CLRTDES

/*

Using PASSWORD to encrypt on z/OS: CSDFILEN encrypts a file using a

CLRTDES data-encrypting key. The data-encrypting key is generated using the

specified password.

//*---

//ENC EXEC PGM=CSDFILEN

//*----------

//SYSUDUMP DD SYSOUT=*

//SYSOUT DD SYSOUT=*

//*----------

//SYSPRINT DD DSN=USERID.ZEF2.LISTING,DISP=(MOD,PASS)

//*----------

//SYSUT1 DD DSN=USERID.ZEF2.CLR,DISP=SHR

//SYSUT2 DD DSN=USERID.ZEF2.PW.ENC,DISP=SHR

//SYSIN DD *

--

* PASSWORD encryption on a z *

--

DESC=’TDES ENCRYPTED FILES USING Password ’

PASSWORD=ABCD1234

CLRTDES

/*

Using RSA keys and certificates on Encryption Facility for z/OS Client: To use

RSA keys and certificates with Encryption Facility for z/OS Client, you must store

your keys in a Java keystore. The most common way to do this is with a utility

called keytool. To transfer the RSA public key between systems, you must use

X.509 certificates. For information about using Encryption Facility for z/OS Client,

see the README file documentation from the following Web site:

http://www.ibm.com/servers/eserver/zseries/zos/downloads/#asis.

Chapter 8. User scenarios 59

http://www.ibm.com/servers/eserver/zseries/zos/downloads/#asis

Decrypting the file protected with RSA: The recipient of the encrypted file copies

the file into zef.rsa.enc. Encryption Facility for z/OS Client is used to decrypt the

RSA protected file. The data-encrypting key is recovered using an RSA private key

from the Java keystore. The KEYPW on the export command specifies a password

used to recover the RSA key:

 export MODE=’decrypt’

 export KEYSTORETYPE=’jks’

 export KEYSTORENAME=’/home/g1a5445/edar/test/keystores/keystore_jks’

 export ALIAS_1=’peggyrac’

 export KEYPW=’xyz12abc’

java com.ibm.encryptionfacility.EncryptionFacility \

-mode $MODE \

-password $KEYPW \

-keyStoreType $KEYSTORETYPE \

-keyStoreName $KEYSTORENAME \

-keyStoreCertificateALIAS $ALIAS_1 \

-inputFile zef.rsa.enc \

-outputFile zef.rsa.dec

Decrypting the file protected with PASSWORD: The recipient of the encrypted

file copies the file into zef.pw.enc. Encryption Facility for z/OS Client is used to

decrypt the password protected file. The data-encrypting key is regenerated using

the password provided in the Java option: -password $PASSWORD. The password is

the same password that was used to encrypt the original file.

export MODE=’decrypt’

export PASSWORD=’ABCD1234’

java com.ibm.encryptionfacility.EncryptionFacility \

-mode $MODE \

-password $PASSWORD \

-inputFile zef.pw.enc \

-outputFile zef.pw.dec

Scenario 3

In this scenario, a z/OS system that has access to a UNIX Systems Services (USS)

file system creates an encrypted data set on tape and copies the encrypted data

set to a USS file. USS then invokes a batch job for Encryption Facility for z/OS

Client to decrypt the file to another USS file and copies the decrypted USS file to a

z/OS data set.

Encrypting data using z/OS and placing the encrypted data in a tape data set:

The following JCL for CSDFILEN encrypts the z/OS data set HLQ.INPUT.DATASET

and places the output into a tape data set. CSDFILEN uses a password

(TEST1PASSWORD) to encrypt the data and places the encrypted data in the data set

HLQ.ENCRYPTED.TAPE.DATASET:

60 Encryption Facility for z/OS:: User’s Guide

|

|
|
|
|
|

|
|
|
|
|

//ESE2TAPE JOB ’JOB INFORMATION’,’TEST’,MSGLEVEL=(1,1),

// MSGCLASS=H,CLASS=A,NOTIFY=system_id,REGION=4M

//***

//* This is sample JCL which can be used to encrypt data and place *

//* it into a tape dataset using the Encryption Services provided *

//* by the IBM Encryption Facility for z/OS *

//* *

//* This job uses the CSDFILEN batch program of the Encryption *

//* Services to encrypt the data to tape. The SYSUT1 DD statement *

//* specifies the name of the dataset that contains the data to *

//* be encrypted. The SYSUT2 DD statement contains the name of the *

//* tape dataset that will contain the encrypted data. *

//* *

//* Refer to the IBM Encryption Facility for z/OS: User’s Guide for *

//* additional information. *

//***

//ENC EXEC PGM=CSDFILEN

//SYSPRINT DD SYSOUT=*

//SYSUDUMP DD SYSOUT=*

//SYSOUT DD SYSOUT=*

//SYSIN DD *

PASSWORD=TEST1PASSWORD

//SYSUT1 DD DSN=HLQ.INPUT.DATASET,DISP=SHR

//SYSUT2 DD UNIT=3590-1,DSN=HLQ.ENCRYPTED.TAPE.DATASET,

// DISP=OLD,VOL=SER=ABCDEF

/*

Copying the data to USS and using batch services to invoke Encryption

Facility for z/OS Client: The JCL performs the following steps:

1. In STEP1 the IEBGENER copy program on z/OS copies the encrypted data set

HLQ.ENCRYPTED.TAPE.DATASET from the tape and places it into a USS file called

/filesys/input.encrypt.file on the USS file system.

2. In STEP2 a BPXBATCH program on USS runs the shell script javadecrypt_pw.sh

to invoke Encryption Facility for z/OS Client that decrypts the data in the USS

file /filesys/input.encrypt.file. The JCL for BPXBATCH specifies that the

decrypted file is to be placed into another USS file /filesys/
output.decrypt.file.

For the sample script that Encryption Facility for z/OS Client uses to decrypt the

data, see “Running the Encryption Facility for z/OS Client sample script” on

page 63.

3. In STEP3 IEBGENER copies the decrypted USS file /filesys/
output.decrypt.file from STEP2 to a z/OS data set HLQ.DECRYPT.OUTPUT.

Chapter 8. User scenarios 61

||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|

|
|
|

|
|
|
|
|

|
|
|

|
|

//JCD2DSN JOB ’JOB INFORMATION’,MSGLEVEL=(1,1),

// MSGCLASS=H,CLASS=A,NOTIFY=system_id

//**

//* This is sample JCL which can be used to receive an encrypted dataset on a tape and perform *

//* decryption using the Encryption Facility for z/OS JAVA client. The resulting decrypted data *

//* is placed into a z/OS dataset. *

//* *

//* Overview of job steps *

//* - STEP1 - this will use IEBGENER to copy an encrypted dataset from a tape and place it *

//* into a file within the USS file system. *

//* - STEP2 - this will use the USS file created by STEP1 and invoke BPXBATCH to run a shell *

//* script named javadecrypt_pw.sh to decrypt the data into another USS file within a file *

//* system. *

//* - STEP3 - this will use IEBGENER to copy the decrypted file from the USS file system and *

//* place it into an z/OS data set. *

//* *

//* File, dataset and JOB considerations: The originating encrypted dataset is assumed to be *

//* of Fixed Block (FB) Record Format (RECFM). *

//* *

//* - All steps within this job specify the REGION= parameter. *

//* This is critical to STEP2 to ensure that JAVA has sufficient memory to execute and decrypt *

//* the file. *

//* *

//* - The user must ensure that there is sufficient space available within the USS file system *

//* to contain the encrypted file (which came from tape) and the decrypted file (which was the *

//* output of the EF JAVA decryption client). *

//* *

//* - The customer’s client (receiver of the encrypted data) must know the data set attributes *

//* (BLKSIZE,RECFM,LRECL) of the original (clear) source dataset. This information is required *

//* for STEP3 of this job. It is specified on STEP3 SYSUT1 DD in this sample. *

//* *

//* - The customer’s client (receiver of the encrypted data) must also know the size of the *

//* original (clear) source dataset. This information is required for STEP3 of this job. It is *

//* specified on STEP3, SYSUT2 DD for the SPACE value. *

//* *

//* Note: USS refers to Unix System Services *

//* *

//**

//**

//* STEP1 - This jobstep will copy an encrypted file from a tape dataset to an HFS file within *

//* Unix System Services. The HFS is automatically created via the OCREAT specified on the *

//* PATHOPTS keyword. The PATHDISP keyword will keep the file active across to the next step. *

//* Refer to the Unix System Services User’s Guide for additional explanation on PATHOPTS, *

//* PATHMODE and PATHDISP. *

//**

//STEP1 EXEC PGM=IEBGENER,REGION=6M

//SYSUT1 DD UNIT=3590-1,DSN=HLQ.ENCRYPTED.TAPE.DATASET,

// DISP=(SHR),VOL=SER=ABCDEF

//SYSUT2 DD PATH=’/filesys/input.encrypt.file’,

// PATHOPTS=(OWRONLY,OCREAT),

// PATHMODE=SIRWXU,

// PATHDISP=KEEP

//SYSPRINT DD SYSOUT=*

//SYSIN DD DUMMY

//*

62 Encryption Facility for z/OS:: User’s Guide

||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

//***

//* STEP2 - This jobstep will use BPXBATCH to invoke a USS shell script which invokes the EF JAVA *

//* decryption client.The JAVA decryption client uses STDIN as input to specify the USS file *

//* containing the encrypted data. The JAVA decryption client uses STDOUT as the output USS file *

//* into which decrypted data will be placed. *

//* *

//* The shell script is named javadecrypt_pw.sh and the names of the files specified in STDIN and *

//* STDOUT DDs must match the input and output file specifications in the shell script. The PARM *

//* specified on BPXBATCH assumes that the shell script resides in the USS filesystem in *

//* a path specified by /path. *

//* *

//* STDERR specifies a USS file into which error messages from the JAVA decryption *

//* client will be placed. *

//* *

//* Repeating from the comments above, REGION=0M is critical on STEP2 to ensure that JAVA has *

//* sufficient storage to decrypt the input file. *

//***

//STEP2 EXEC PGM=BPXBATCH,REGION=0M,

// PARM=’SH /path/javadecrypt_pw.sh’

//STDIN DD PATH=’/filesys/input.encrypt.file’,

// PATHOPTS=(ORDONLY),

// PATHMODE=SIRWXU,

// PATHDISP=KEEP

//STDOUT DD PATH=’/filesys/output.decrypt.file’,

// PATHOPTS=(OWRONLY,OCREAT),

// PATHMODE=SIRWXU,

// PATHDISP=KEEP

//STDERR DD PATH=’/path/stderr.log’,

// PATHOPTS=(OWRONLY,OCREAT,OTRUNC),PATHMODE=SIRWXU

//**

//* STEP3 - This jobstep will copy a decrypted file from a USS file within the file system to a *

//* z/OS dataset via IEBGENER. The BLKSIZE, LRECL, and RECFM on SYSUT1 will drive the attributes *

//* that will be used on SYSUT2 when it is created. *

//* *

//* The space required to handle the decrypted output in the z/OS dataset must be consistent with *

//* the original (clear) source dataset that came from the originator partner. In this sample, *

//* the dataset required 300 cylinders on a 3390. *

//* *

//**

//STEP3 EXEC PGM=IEBGENER,REGION=6M

//SYSUT1 DD PATH=’/filesys/output.decrypt.file’,

// BLKSIZE=6144,LRECL=1024,RECFM=FB,

// PATHOPTS=(ORDONLY),

// PATHMODE=SIRWXU,

// PATHDISP=KEEP

//*

//SYSUT2 DD DSN=HLQ.DECRYPT.OUTPUT,

// DISP=(NEW,CATLG),

// SPACE=(CYL,(2,1)),UNIT=SYSDA

//SYSPRINT DD SYSOUT=*

//SYSIN DD DUMMY

Running the Encryption Facility for z/OS Client sample script: STEP2 of the JCL

specifies the shell script javadecrypt_pw.sh that invokes Encryption Facility for

z/OS Client. The following sample script shows how Encryption Facility for z/OS

Client uses the password TEST1PASSWORD to decrypt the USS file

/filesys/input.encrypt.file:

Chapter 8. User scenarios 63

||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|
|
|

Sample script which may be invoked via z/os Batch process, IE: BPXBATCH

PATH statement needs to specify the absolute path to the java ’bin’ directory.

CLASSPATH must include the java encryption java client’s absolute path and name.

IE: /path/efclient.zip

it is important to ’cd’ to the directory where the efclient.zip file resides.

Please note: This example utilizes decryption via PASSWORD.

This example uses ’/filesys/input.encrypt.file’ as it’s encrypted data source,

which is also specified in BPXBATCH job as STDIN.

This example uses ’/filesys/output.decrypt.file’ for expected decrypted output,

which is also specified in BPXBATCH job as STDOUT.

Important: Ensure the ’REGION=0M’, parm is included in the BPXBATCH job step,

to ensure the java virtual machine

has sufficient storage available.

export PATH=/usr/lpp/java/cur13secure/bin:.:$PATH

export CLASSPATH=/feu/efclient.zip:.:$CLASSPATH

cd /path

java -Djava.encryption.facility.debuglevel=0 \

com.ibm.encryptionfacility.EncryptionFacility \

-mode decrypt \

-password TEST1PASSWORD \

-inputFile /filesys/input.encrypt.file \

Using the RACDCERT command for key and certificate management of

encrypted data

In this scenario you want to create a new certificate with a 2048 bit RSA

public/private key pair for an encrypted data set that is sent from a remote site. You

plan to send the certificate to the remote site so the recipient can create a PKDS

label and store the certificate in the ICSF PKDS on the remote system:

1. Use the RACDCERT command on your site to create the PKDS label for the

key pair:

RACDCERT GENCERT SUBJECTSDN(CN(‘Sally’’s Data Encryption‘)) WITHLABEL(‘Sally’’s Data Encryption‘) SIZE(2048)

 PCICC NOTAFTER(DATE(2020/08/10)

2. Use the RACDCERT LIST command to view the name of the PKDS label that

RACF has created:

RACDCERT LIST(LABEL(‘Sally’’s Data Encryption‘))

Digital certificate information for user SALLY:

 Label: Sally’s Data Encryption

 Certificate ID: 2QfHxdbZx8XUaqweQMOFmaNA46iXhUBgQOKFmUB7QPDw

 Status: TRUST

 Start Date: 2005/08/11 00:00:00

 End Date: 2020/08/10 23:59:59

 Serial Number:

 >00<

 Issuer’s Name:

 >CN=Sally’s Data Encryption<

 Subject’s Name:

 >CN=Sally’s Data Encryption<

 Private Key Type: PCICC

 Private Key Size: 2048

 PKDS Label: IRR.DIGTCERT.SALLY.SY1.BD7103108611F42F

64 Encryption Facility for z/OS:: User’s Guide

||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|

3. To send the certificate you need to extract it from RACF. Use the RACDCERT

EXPORT command to extract it from RACF:

RACDCERT EXPORT(LABEL(‘Sally’’s Data Encryption‘)) DSN(FOR.JACOB.CRT)

4. Send the certificate to the remote site so the recipient can return encrypted

data. (You can use e-mail, FTP, or whatever program your installation uses to

send the certificate to the remote site. Note that you do not send the private key

to the recipient so the certificate does not need to be protected.)

5. The recipient at the remote site receives the certificate that you sent in step 4

into a data set (SALLY.CRT in this example). The recipient needs the public key

from this certificate to send you encrypted data. The recipient adds the

certificate to the RACF data base as a SITE certificate, and gives it the name

“Sally”. The command also creates a PKDS label with the same value “Sally.”

RACDCERT SITE ADD(SALLY.CRT) WITHLABEL(‘Sally‘) ICSF(*)

6. From the remote site the recipient uses the following RACDCERT command to

list out the certificate that has been added to RACF. Note that RACF changes

PKDS label text to uppercase:

RACDCERT SITE LIST(LABEL(‘Sally‘))

Digital certificate information for SITE:

 Label: Sally

 Certificate ID: egljcv8XUaqweQMOFmaNA46iXhUBgQOKFmUB7QPDw

 Status: TRUST

 Start Date: 2005/08/11 00:00:00

 End Date: 2020/08/10 23:59:59

 Serial Number:

 >00<

 Issuer’s Name:

 >CN=Sally’s Data Encryption<

 Subject’s Name:

 >CN=Sally’s Data Encryption<

 Private Key Type: None

 PKDS Label: SALLY

Using ICSF utilities panels for PKDS key management

ICSF APAR

You need to ensure that the ICSF PTF for APAR OA15156 is installed to be

able to use the ICSF utility enhancements for this scenario. For complete

information about using these ICSF utilities panels, see the documentation for

the APAR.

 This scenario shows how to use the ICSF utilities panels to manage PKDS keys.

1. From the ICSF primary options utility panel, select option 5, UTILITY and press

ENTER. You receive the ICSF utilities panel CSFUTL00:

Chapter 8. User scenarios 65

|

|

|
|
|
|
||||

|

|
|

------------------------------- ICSF - Utilities ---------------------------

 Enter the number of the desired option.

 1 ENCODE - Encode data

 2 DECODE - Decode data

 3 RANDOM - Generate a random number

 4 CHECKSUM - Generate a checksum and verification and

 hash pattern

 5 PPKEYS - Generate master key values from a pass phrase

 6 PKDSKEYS - Manage keys in the PKDS

 Press ENTER to go to the selected option.

 Press END to exit to the previous menu.

 OPTION ===>

2. From CSFUTL00 select option 6: PKDSKEYS and press enter. You receive the

ICSF PKDS keys panel CSFPKY00.

------------------------------- ICSF - PKDS Keys -------------------------

 Enter the PKDS record’s label for the actions below

 ==>

 Select one of the following actions then press ENTER to process:

 _ Generate a new PKDS key pair record

 Enter the key length ===> 512, 1024, or 2048

 Enter Private Key Name (optional)

 ==>

 _ Delete the existing public key or key pair PKDS record

 _ Export the PKDS record’s public key to a certificate data set

 Enter the DSN ===>

 Enter desired subject’s common name (optional)

 CN=

 _ Create a PKDS public key record from an input certificate.

 Enter the DSN ===>

 COMMAND ===>

CSFPKY00 allows you to perform the following PKDS key management:

v Generate an RSA key pair PKDS record

v Delete an existing PKDS record

v Export an existing public key to an x.509 certificate

v Import a public key from an x.509 certificate

Coprocessor Requirements for using the ICSF utility panels: To use the full

function of the PKDS key management with the ICSF utility panels, you must

have a PCICC, PCIXCC, or a CEX2C cryptographic coprocessor. If you do not

have one of these coprocessors, you cannot generate key pairs using the

panels.

For example, to generate a new PKDS RSA key pair, enter the PKDS record label

(MY.PKDS.KEY.PAIR) and the key length in bits. You can also specify an optional

66 Encryption Facility for z/OS:: User’s Guide

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||

|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||

|

|

|

|

|

|
|
|
|
|

|
|

private key name that ICSF can imbed into the key token. This service creates an

RSA public/private key PKDS record. You can use the key pair that ICSF generates

to encrypt and recover archive data. You can also use it to recover encrypted data

that another party transmits to you if you make the public key portion available to

the partner:

------------------------------- ICSF - PKDS Keys -------------------------

 Enter the PKDS record’s label for the actions below

 ==>MY.PKDS.KEY.PAIR

 Select one of the following actions then press ENTER to process:

 _ Generate a new PKDS key pair record

 Enter the key length ===> 1024 512, 1024, or 2048

 Enter Private Key Name (optional)

 ==>

 _ Delete the existing public key or key pair PKDS record

 _ Export the PKDS record’s public key to a certificate data set

 Enter the DSN ===>

 Enter desired subject’s common name (optional)

 CN=

 _ Create a PKDS public key record from an input certificate.

 Enter the DSN ===>

 COMMAND ===>

If the system successfully generates the new key pair record, you receive

confirmation panel CSFPKY01:

---------------------- ICSF - PKDS Key Request Successful ---------------

 Label ==> MY.PKDS.KEY.PAIR

 Key function completed successfully

 Press ENTER or END to return to the previous menu.

COMMAND ===>

Chapter 8. User scenarios 67

|
|
|
|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||

|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||

|

68 Encryption Facility for z/OS:: User’s Guide

Appendix. Notices

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in

other countries. Consult your local IBM representative for information on the

products and services currently available in your area. Any reference to an IBM

product, program, or service is not intended to state or imply that only that IBM

product, program, or service may be used. Any functionally equivalent product,

program, or service that does not infringe any IBM intellectual property right may be

used instead. However, it is the user’s responsibility to evaluate and verify the

operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter

described in this document. The furnishing of this document does not give you any

license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing

IBM Corporation

North Castle Drive

Armonk, NY 10504-1785

U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM

Intellectual Property Department in your country or send inquiries, in writing, to:

IBM World Trade Asia Corporation

Licensing

2-31 Roppongi 3-chome, Minato-ku

Tokyo 106-0032, Japan

The following paragraph does not apply to the United Kingdom or any other

country where such provisions are inconsistent with local law:

INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS

PUBLICATION “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS

OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES

OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A

PARTICULAR PURPOSE. Some states do not allow disclaimer of express or

implied warranties in certain transactions, therefore, this statement may not apply to

you.

This information could include technical inaccuracies or typographical errors.

Changes are periodically made to the information herein; these changes will be

incorporated in new editions of the publication. IBM may make improvements and/or

changes in the product(s) and/or the program(s) described in this publication at any

time without notice.

Any references in this information to non-IBM Web sites are provided for

convenience only and do not in any manner serve as an endorsement of those

Web sites. The materials at those Web sites are not part of the materials for this

IBM product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it believes

appropriate without incurring any obligation to you.

© Copyright IBM Corp. 2005, 2006 69

Licensees of this program who wish to have information about it for the purpose of

enabling: (i) the exchange of information between independently created programs

and other programs (including this one) and (ii) the mutual use of the information

which has been exchanged, should contact:

IBM Corporation

Department number/Building number_

Site mailing address_

City, State; Zip Code_

U.S.A. (or appropriate country)

Such information may be available, subject to appropriate terms and conditions,

including in some cases, payment of a fee.

The licensed program described in this information and all licensed material

available for it are provided by IBM under terms of the IBM Customer Agreement,

IBM International Program License Agreement, or any equivalent agreement

between us.

Information concerning non-IBM products was obtained from the suppliers of those

products, their published announcements or other publicly available sources. IBM

has not tested those products and cannot confirm the accuracy of performance,

compatibility or any other claims related to non-IBM products. Questions on the

capabilities of non-IBM products should be addressed to the suppliers of those

products.

This information contains examples of data and reports used in daily business

operations. To illustrate them as completely as possible, the examples include the

names of individuals, companies, brands, and products. All of these names are

fictitious and any similarity to the names and addresses used by an actual business

enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which

illustrate programming techniques on various operating platforms. You may copy,

modify, and distribute these sample programs in any form without payment to IBM,

for the purposes of developing, using, marketing or distributing application programs

conforming to the application programming interface for the operating platform for

which the sample programs are written. These examples have not been thoroughly

tested under all conditions. IBM, therefore, cannot guarantee or imply reliability,

serviceability, or function of these programs. You may copy, modify, and distribute

these sample programs in any form without payment to IBM for the purposes of

developing, using, marketing, or distributing application programs conforming to

IBM’s application programming interfaces.

If you are viewing this information softcopy, the photographs and color illustrations

may not appear.

Programming interface information

This book is a user’s guide to Encryption Facility.

This book primarily documents information that is NOT intended to be used as a

Programming Interface of Encryption Facility.

70 Encryption Facility for z/OS:: User’s Guide

However, this information may also contain diagnosis, modification, and tuning

information. Diagnosis, modification and tuning information is provided to help you

debug your application software.

Caution: Do not use this diagnosis, modification, and tuning information as a

programming interface because it is subject to change.

Trademarks

The following terms used in this publication are trademarks of the IBM Corporation

in the United States and/or other countries:

 DFSMSdfp™

 DFSMSdss

 DFSMShsm

 IBM

 MVS

 OS/390

 RACF

 Redbooks

 iSeries

 xSeries

 z/OS

 z/Series

Microsoft, Windows, Windows NT®, and the Windows logo are trademarks of

Microsoft Corporation in the United States, other countries, or both.

Java, JavaScript™, and all Java-based trademarks are trademarks of Sun

Microsystems, Inc. in the United States, other countries, or both.

Linux is a trademark of Linus Torvalds in the United States, other countries, or both.

UNIX is a registered trademark of The Open Group in the United States and other

countries.

Other company, product, and service names may be trademarks or service marks

of others.

Appendix. Notices 71

72 Encryption Facility for z/OS:: User’s Guide

Index

Numerics
128–bit AES keys 1

C
certificates

use with Encryption Facility for z/OS Client 39

use with RACF 48

CLRAES128 keyword
for CSDFILEN encryption 18

for DFSMSdss Encryption 43

CLRTDES keyword
for CSDFILEN encryption 18

for DFSMSdss Encryption 43

compressing data
diagnostics 27

guidelines 21

COMPRESSION keyword 19

cryptographic keys
determining which to use for encryption 19

ICSF 12

use with IBM Encryption Facility for z/OS 1, 12

CSDFILDE
batch job for decryption 31

callable services for 38

DD statements for decrypting files 31

diagnostics 36

JCL examples 37

JCL keywords 31

keywords for decrypting files 33

return codes 36

statistics report file 34

CSDFILEN
batch job for encryption 15

callable services for 30

DD statements for encrypting files 15

diagnostics 27

header file format 22

JCL examples 28

JCL keywords 17

keywords for encrypting files 17

return codes 27

statistics report file 24

D
decryption

CSDFILDE JCL 31

DFSMSdss Encryption 43

Encryption Facility for z/OS Client 39

Encryption Services 3

overview of CSDFILDE 4

scenario 57

DESC keyword 17

DFSMSdss Encryption
encryption and decryption for 43

feature of IBM Encryption Facility for z/OS 1

DFSMSdss Encryption (continued)
JCL examples 45

JCL keywords 43

overview 5

software requirements 11

using DFSMShsm with 5

DFSMShsm
See DFSMSdss Encryption, using DFSMShsm with

diagnostics
CSDFILDE 36

CSDFILEN 27

DUMP command for encryption with DFSMSdss

Encryption 43

E
ENCRYPT keyword 43

encrypting and decrypting data
overview 1

scenarios 57

encryption
CSDFILEN JCL 15

DFSMSdss Encryption 43

Encryption Facility for z/OS Client 39

Encryption Services 3

overview of CSDFILEN 4

scenario 60

Encryption Facility
See IBM Encryption Facility for z/OS, overview

Encryption Facility for z/OS Client
considerations using 40

encryption and decryption for 39

function of IBM Encryption Facility for z/OS 1

installing 39

overview 4

software requirements 8

using RSA keys and certificates 39

Encryption Services
CSDFILDE batch program 4

CSDFILEN batch program 4

function of IBM Encryption Facility for z/OS 1

installing 11

overview 1

software requirements 8

ENCTDES keyword
for CSDFILEN encryption 18

for DFSMSdss Encryption 43

H
hardware requirements 6

HWCOMPRESS keyword 44

I
IBM Encryption Facility for z/OS

cryptographic keys 12

© Copyright IBM Corp. 2005, 2006 73

IBM Encryption Facility for z/OS (continued)
features 1

hardware and software requirements 6

installation 11

overview 1

UNIX pipes 22

user scenarios 57

ICOUNT keyword
description 19

specifying value for 21

ICSF
callable services and diagnostics for CSDFILDE 36

callable services and diagnostics for CSDFILEN 27

cryptographic hardware features and encryption

options 6

cryptographic keys 12

getting started with 11

utility panels 13

ICSF utility panels
coprocessor requirements 13

description 13

scenario 65

INFO keyword 34

Integrated Cryptographic Service Facility
See ICSF

J
JCL

DD statements for decrypting files with

CSDFILDE 31

DD statements for encrypting files with

CSDFILEN 15

examples for DFSMSdss Encryption 45

examples of DD statements for decrypting files with

CSDFILDE 37

examples of DD statements for encrypting files with

CSDFILEN 28

keywords for decrypting files with CSDFILDE 33

keywords for DFSMSdss Encryption 43, 44

keywords for encrypting files with CSDFILEN 17

K
KEYPASSWORD keyword

for decryption with DFSMSdss Encryption 44

for encryption with DFSMSdss Encryption 44

keys
See cryptographic keys

L
LookAt message retrieval tool ix

M
message retrieval tool, LookAt ix

P
PASSWORD keyword

determining when to use 20

for CSDFILDE decryption 33

for CSDFILEN encryption 18

R
RACDCERT command

considerations using 54

description 48

RACF
enhancements for IBM Encryption Facility for

z/OS 47

messages 55

RACDCERT command 48

scenario to manage keys and certificates 64

sending trusted certificates 48

software requirements 8

storing keys, managing PKDS labels, and sending

digital certificates 47

RESTORE command for decryption with DFSMSdss

Encryption 44

RSA keyword
determining when to use 20

for CSDFILDE decryption 33

for CSDFILEN encryption 18

for decryption with DFSMSdss Encryption 44

for encryption with DFSMSdss Encryption 44

private tokens and cryptographic hardware for

decryption 20

specifying multiple keywords for CSDFILEN 21

using digital certificates with 21

RSA parameter for Encryption Facility for z/OS

Client 39

S
scenarios

copying z/OS encrypted data to USS and invoking

Encryption Facility for z/OS Client 61

encrypting and decrypting USS files 60

encrypting data using z/OS and decrypting using

Encryption Facility for z/OS Client 57

encrypting data using z/OS and placing the

encrypted data in a tape data set 60

running the Encryption Facility for z/OS Client

sample script to decrypt data 63

using ICSF utilities panels for PKDS key

management 65

using the PASSWORD keyword 57

using the RACDCERT command for key and

certificate management of encrypted data 64

using the RSA keyword 58

software requirements 8

DFSMSdss Encryption 11

Encryption Facility for z/OS Client 8

IBM Encryption Facility for z/OS 8

ICSF 9

RACF 8

74 Encryption Facility for z/OS:: User’s Guide

statistics report file
CSDFILDE 34

CSDFILEN 24

storing keys, managing PKDS labels, and sending

digital certificates
using RACF 47

T
TDES triple-length keys 1

U
UNIX system services

See USS

USS
scenario 60

using UNIX pipes with CDSFILEN 22

V
verifying encryption files 22

Index 75

76 Encryption Facility for z/OS:: User’s Guide

Readers’ Comments — We’d Like to Hear from You

Encryption Facility for z/OS:

User’s Guide

Version 1 Release 1.0

 Publication No. SA23-1349-02

 Overall, how satisfied are you with the information in this book?

 Very Satisfied Satisfied Neutral Dissatisfied Very Dissatisfied

Overall satisfaction h h h h h

 How satisfied are you that the information in this book is:

 Very Satisfied Satisfied Neutral Dissatisfied Very Dissatisfied

Accurate h h h h h

Complete h h h h h

Easy to find h h h h h

Easy to understand h h h h h

Well organized h h h h h

Applicable to your tasks h h h h h

 Please tell us how we can improve this book:

 Thank you for your responses. May we contact you? h Yes h No

 When you send comments to IBM, you grant IBM a nonexclusive right to use or distribute your comments in any

way it believes appropriate without incurring any obligation to you.

Name

Address

Company or Organization

Phone No.

Readers’ Comments — We’d Like to Hear from You
 SA23-1349-02

SA23-1349-02

����

Cut or Fold
Along Line

Cut or Fold
Along Line

Fold and Tape Please do not staple Fold and Tape

Fold and Tape Please do not staple Fold and Tape

NO POSTAGE
NECESSARY
IF MAILED IN THE
UNITED STATES

BUSINESS REPLY MAIL
 FIRST-CLASS MAIL PERMIT NO. 40 ARMONK, NEW YORK

 POSTAGE WILL BE PAID BY ADDRESSEE

IBM Corporation

Department 55JA, Mail Station P384

2455 South Road

Poughkeepsie, NY

 12601-5400

_ _

_ _

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_

����

Program Number: 5655-P97

Printed in USA

SA23-1349-02

	Contents
	Figures
	About This Book
	Who should read this book
	How to use this book
	Where to find more information
	Related publications

	Using LookAt to look up message explanations
	Using IBM Health Checker for z/OS
	Other sources of information
	IBM discussion area
	Internet sources

	Do you have problems, comments, or suggestions?

	Summary of changes
	Chapter 1. Overview of IBM Encryption Facility for z/OS
	What is Encryption Facility?
	Features available with Encryption Facility
	Encryption Services
	Encryption Facility for z/OS Client
	DFSMSdss Encryption
	Comparison of Encryption Facility features and functions
	Security Server RACF enhancements
	Summary of Encryption Facility functions

	How Encryption Services and Encryption Facility for z/OS Client work
	How Encryption Services works
	How Encryption Facility for z/OS Client works

	How DFSMSdss Encryption works
	Hardware and software requirements
	Hardware requirements
	Software requirements

	Chapter 2. Getting started
	How do I install IBM Encryption Facility for z/OS?
	Getting started with Encryption Services
	Getting started with ICSF
	Getting started with Encryption Facility for z/OS Client
	Getting started with DFSMSdss Encryption
	Getting started with RACF

	Chapter 3. Encrypting files through CSDFILEN of Encryption Services
	JCL DD statements for CSDFILEN
	Control statement keywords for CSDFILEN SYSIN DD
	User guidelines and samples for encrypting data
	When should I use CLRTDES or ENCTDES?
	Using PASSWORD and RSA options
	Specifying multiple RSA keys
	Using RSA keys and digital certificates
	Specifying the ICOUNT value
	When should I compress data for encryption?
	Verifying encryption files when you archive
	Using Encryption Facility and UNIX pipes
	Format of the header record for the CSDFILEN output file
	Format of the statistics report file for CSDFILEN
	Understanding the statistics report
	CSDFILEN diagnostics

	Return codes for CSDFILEN
	JCL Examples for CSDFILEN

	ICSF callable services for CSDFILEN

	Chapter 4. Decrypting files through CSDFILDE of the Encryption Services
	JCL DD statements for CSDFILDE
	Control statement keywords for CSDFILDE SYSIN DD
	User reference information for decrypting data
	Format of the statistics report file for CSDFILDE
	Understanding the statistics report
	CSDFILDE diagnostics

	Return codes for CSDFILDE
	JCL examples for CSDFILDE

	ICSF callable services for CSDFILDE

	Chapter 5. Using Encryption Facility for z/OS Client
	Encryption and decryption functions
	Installing the Java code
	Using RSA keys and certificates
	Considerations using Encryption Facility for z/OS Client

	Chapter 6. Using DFSMSdss Encryption
	JCL examples for DFSMSdss Encryption

	Chapter 7. Using RACF with Encryption Facility
	Using RACF to store keys, manage PKDS labels, and send digital certificates
	Using the RACDCERT command
	Considerations using RACDCERT
	RACF messages and codes for Encryption Facility

	Chapter 8. User scenarios
	Encrypting data using z/OS and decrypting using Encryption Facility for z/OS Client
	Scenario 1
	Scenario 2
	Scenario 3

	Using the RACDCERT command for key and certificate management of encrypted data
	Using ICSF utilities panels for PKDS key management

	Appendix. Notices
	Programming interface information
	Trademarks

	Index
	Readers’ Comments — We'd Like to Hear from You

